

1

Velvet vs SPAdes

- SPAdes developed to be able to assemble single-cell sequence data
- Single-cell data:
- Not uniform coverage
- Three main differences between Velvet and SPAdes
- Error correction
- Graph construction
- Graph simplification/resolution
- Other differences too, but won't go into that here

Short read assembly - overview

2

Velvet error correction

- Velvet: expects uniform coverage
- Uses high coverage k-mers to error correct low coverage k-mers

4

SPAdes error correcton - Hammer

- BayesHammer (Illumina) or lonHammer (IonTorrent)
- How Hammer works:

BayesHammer does the same as Hammer, but looks at the problem probabilistically

On the left is an example of a typical cluster with good coverage. There are five k-mers clustered together,
with five loci having mis alignents. We compute the consensus string taking muttiplicities int account)
with five loci having mis-aignments. We compute the consensus string (taking multipicitities into account),
which we find is a lready in the custer (boxed in) All the k-mers are then corrected to the consenss. On the right is an example of a common n luster in ow owverage regions. The generating k-mer was sequenced three
times but each time with a single error. There are three k kems in the cluster, times but each time with h single error. There are theee k-mers in the ecluster, but the consensus (boxed in)
thas sot been sequenced and therefore is not in the cluster. Nevertheless, we correct all the k mers to the has not been sequenced and therefore is not in the cluster. . Nevertheless, we worrect alt l he k-mers
consensus, allowing Hammer to reconstruct new k-mers that are not present in the original ldata. consensus, alow ing
Medvedeve at. al,, Bioinformatitics. 2011

5
Velvet graph construction - fixed size k-mer

6

SPAdes: multisized graphs

- Uses several different k-mer sizes

Standard and multisized de Bruiji graph. A circular GENOME CATCAGATAGGA is covered by a set Reaos consisting of nine 4-mers, (ACATT, CATC, ATCA,
TCAG, CAGA, AGAT, GATA, TAGG, GGACl, Three out of TCAG, CAGA, AGAT, GATA, TAGG, GGAC). Three out
12 possible 4 -mers from GENNME are missing from REAS (namely (ATAGAGGGA,GACA), but all 3 -mers from
GENOME are present in GENOME are present in READS. (A) The outside circle
shows asearate black edge for each 3 -mer from shows a separate black edge for each 3 -mer from READ.
Donted red lines indicate vertices that will be glued. The inner circle shows the result of appling some of the
glues. (B) The raph DB(REAOS 3 . resulting from the glues. (B) The graph DB(READS, 3) resulting from all the
glues is tangled. The three h-paths of length 2 in this
 AGGA, and GACA. Thus READ 5_{3}, contains all 4 -mers from
GENOME. (C) The outside circle shows a separate edge for each of the nine 4 -mer reads. The next inner circle sho the graph $D B($ READS, 4$)$, and the innermost circle
represents the $G E N O M E$ The graph $D($ REAOSS, 4) reeresents the EESOME.T The graph DB RRAASS, 4) is
fragmented into 3 connected components. (D) The
multisized de

Graph simplification

Trim
Sort out bulges

$$
\text { CGTAGTAT GTATGGCT CGTAGTATGGCT } \rightarrow \text { CTACTAT }
$$

- Velvet and SPAdes do these things in similar ways, but: SPAdes needs to keep track of covare in case there is an alternate path in the single cell data

8

9

SPAdes options

- hybrid spades - short and long read data
- metaSPAdes - a pipeline for metagenomic data sets
- plasmidSPAdes - a pipeline for extracting and assembling plasmids from WGS data sets
- metaplasmidSPAdes - a pipeline for extracting and assembling plasmids from metagenomic data sets
- rnaSPAdes - a de novo transcriptome assembler from RNA-Seq data.
- truSPAdes - a module for TruSeq barcode assembly
- biosyntheticSPAdes - a module for biosynthetic gene cluster assembly with paired-end reads

Repeat resolution

- Velvet
- Looks at the reads connecting longer contigs
- Uses paired read information to "straighten" out the repeats
- SPAdes
- Uses read pair information
- Creates a paired de Bruijn graph - each node a pair
- Much sparser than the "normal" graph

Unicycler - hybrid assembler

- Short read, long read and hybrid assembler
- Short only - SPAdes optimizer
- Long reads - map (miniasm), assemble w. overlap, polish (racon)
- Hybrid:
- Create SPAdes assembly
- Scaffold with long reads
- Note: only for bacterial genomes!

13

14

Flye - long read assembly

- Only works on long reads
- Follows the assemble-then-correct approach
- Quite fast, and especially good for resolving repeats
- Alternative: canu
- Correct-assemble
- Thorough, but takes a long time

Flye procedure

- Find k-mers in reads, find reads with shared k-mers
- Find reads that have overlaps
- Assemble contigs from overlaps - called disjointigs
- Reconstruct graph
- Resolve repeats
- Polish
- Output assembly

18

Disjointigs

Build disjointigs by taking reads at random and trying to extend left and right using overlaps.
${ }^{\circ}$ neads

c Generating disjointigs

21

Align reads to the repeat graph
f Repeat graph of the concatenate
g Aligning reads to the repeat graph

Resolving unbridged repeats in the assembly graph
${ }^{\mathbf{h}}$ Resolving bridged repeats $\quad \mathbf{i}$ Resolving unbridged repeats

