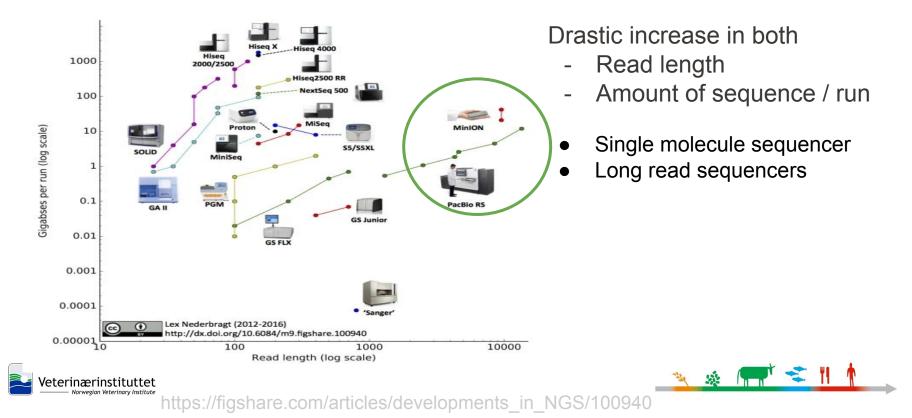
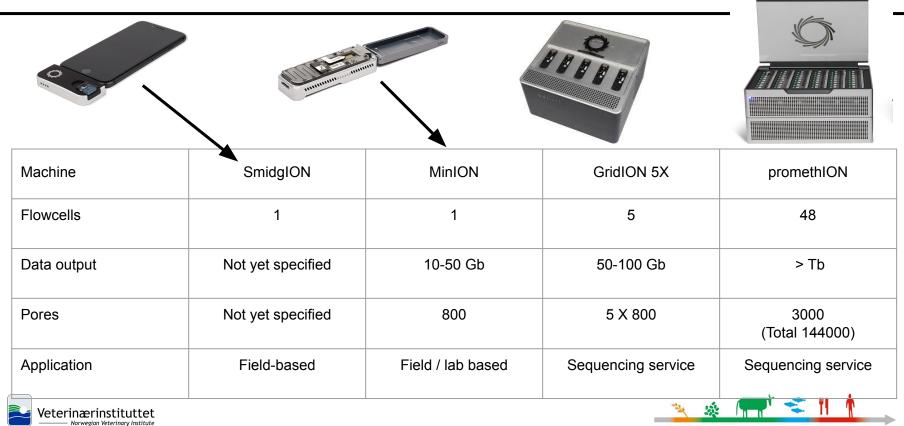
Introduction to Nanopore sequencing

Thomas Haverkamp (Norwegian veterinary institute) @Thomieh


Outline

- The nanopore sequencing method
- Software applications for Nanopore
 - Genome assembly
 - Amplicon Sequencing
- A small NGS comparison



Rapid development in instrumentation

Oxford Nanopore sequencers

4

The minION nanopore sequencer

minION sequencer & flowcell

The minION nanopore flowcell

Flongle flowcell - 2.8 Gb

Normal flowcell - 50 Gb

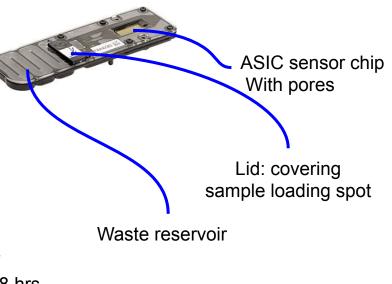
Out of the lab usage...

Antarctica

ISS spacestation

The Jungle

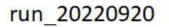
You do need lab equipment to process your samples !!!

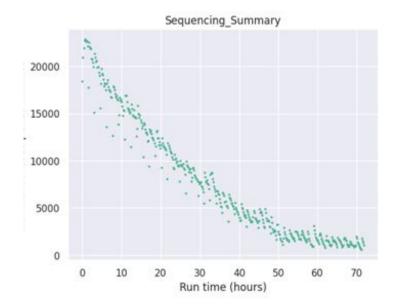


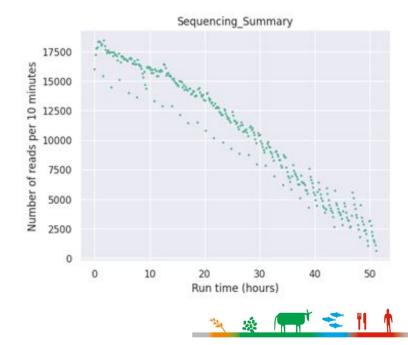
The minION flowcell

Specifications:

- 512 pores (Guaranteed)
- Needs to be stored at 2-8 ^oC
- Pores deteriorate over time Fresh is best
- Longest single read of a single molecule sequence 'Record' > 2 Mbp
- 'Happy' at about 15 kb
- Up to 450 bases per second / sampling rate 4000 kHz
- May give a near 'realtime sequencing' data for up to 48 hrs
- Current capacity up to 48 hrs/20-40gb

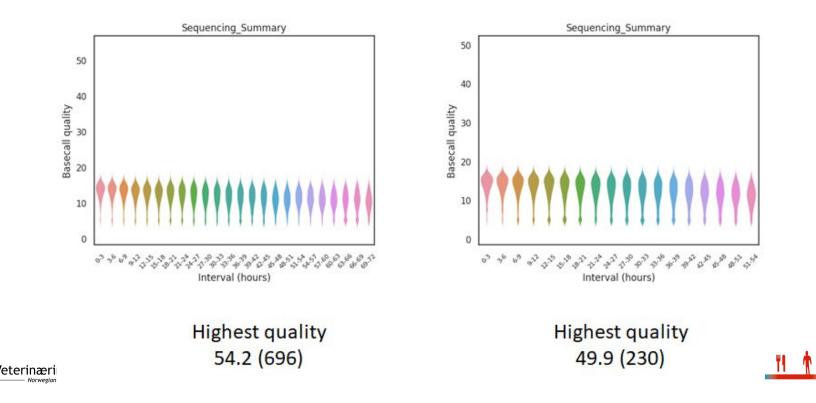





The minION output - reads

run_20220831

terinærinstituttet Norwegian Veterinary Institute

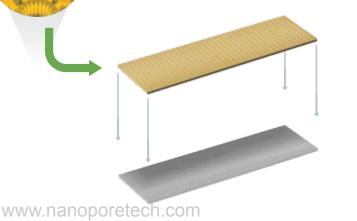


The minION output - quality

run_20220831

run_20220920

10

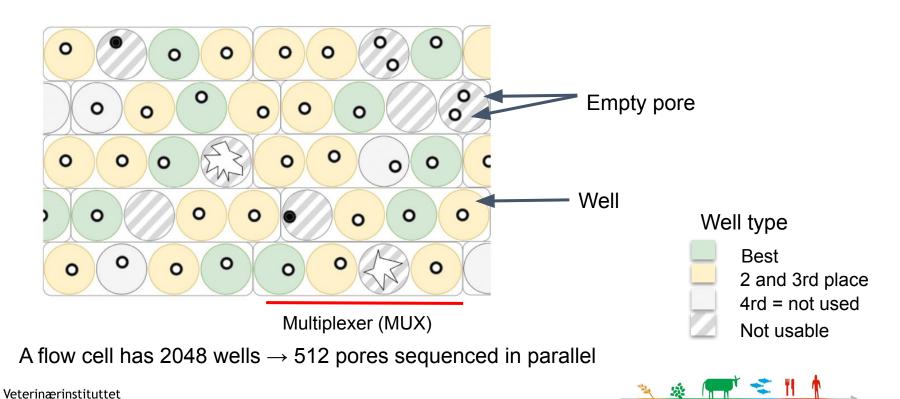


The nanopore sensor chip

Nanopore A protein nanopore is set in an electrically-resistant polymer membrane.

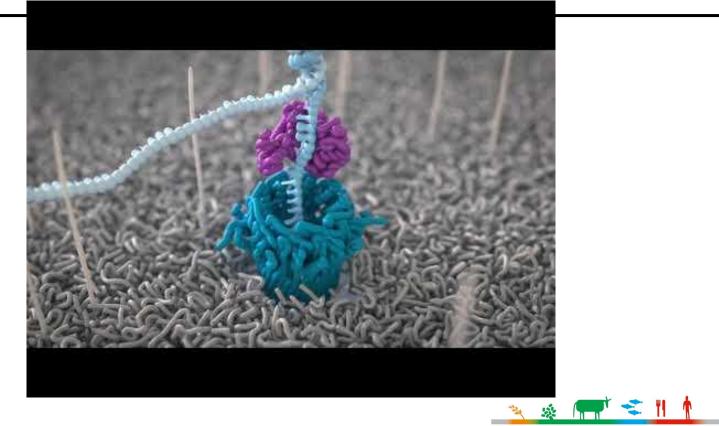
Array of microscaffolds

Each microscaffold supports a membrane and embedded nanopore.


erinærinstituttet

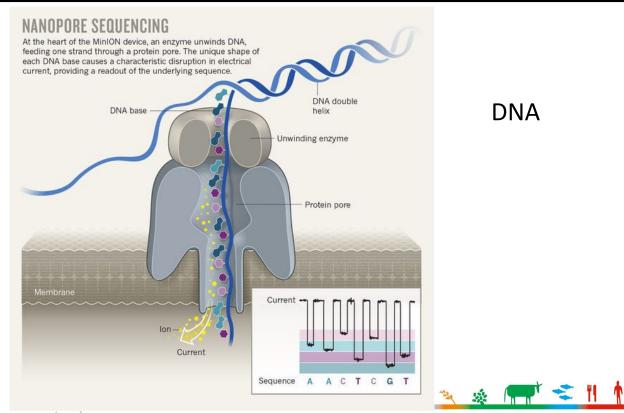
Sensor chip

Each microscaffold corresponds to its own electrode that is connected to a channel in the sensor array chip.


ASIC Application-Specific Integrated Circuit Each nanopore channel is controlled and measured individually by the bespoke ASIC.

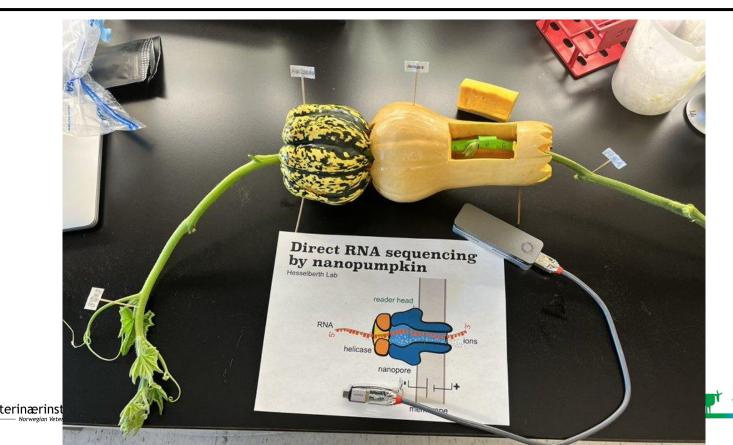
The flowcell layout

Norwegian Veterinary Institute WWW.nanoporetech.com


Nanopore sequencing explained

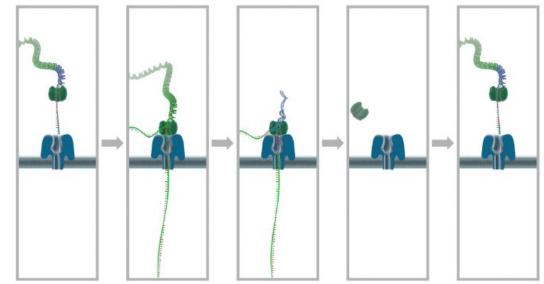
www.nanoporetech.com

Nanopore sequencing explained



www.nanoporetech.com

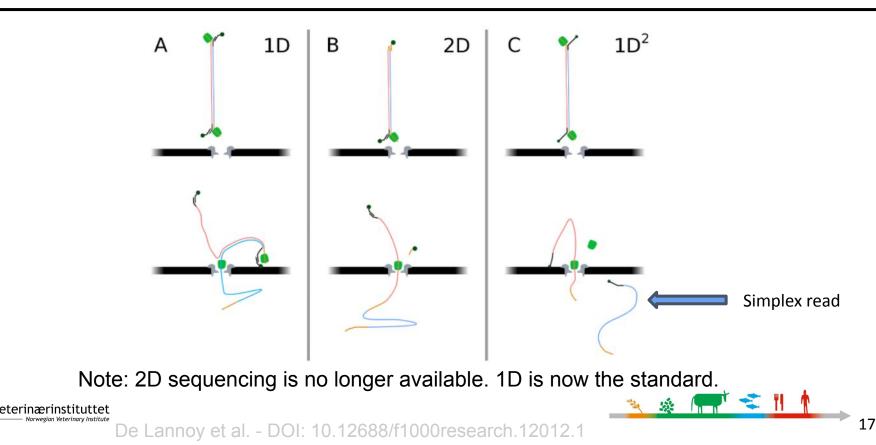
Nanopore sequencing explained



RNA

by Jay Hesselberth

Nanopore sequencing


erinærinstituttet

- The electric potential over the membrane pulls the DNA toward the nanopore.
- The motor protein regulates the speed of sequencing (≈ 450 bases s⁻¹).
- Current changes are measured when a base is pulled through the pore. 14 N

🛒 📚 🍴

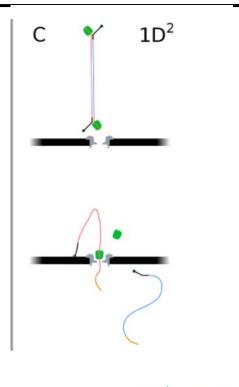
1D vs 2D sequencing

Simplex vs Duplex reads

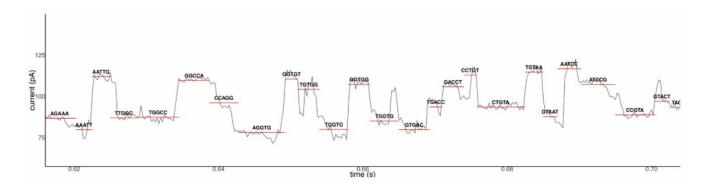
Simplex reads: Single strand of a DNA molecule

Duplex reads: two strands of the "same" DNA molecule

Algorithm:

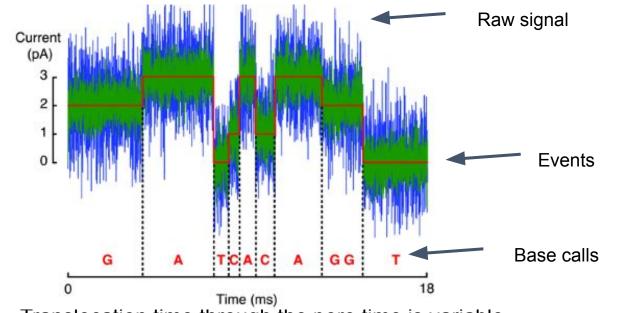

Sequencing of two single strands

- -> at the same pore
- -> with little time between them


—> Create a consensus sequence of both reads, with higher quality scores.

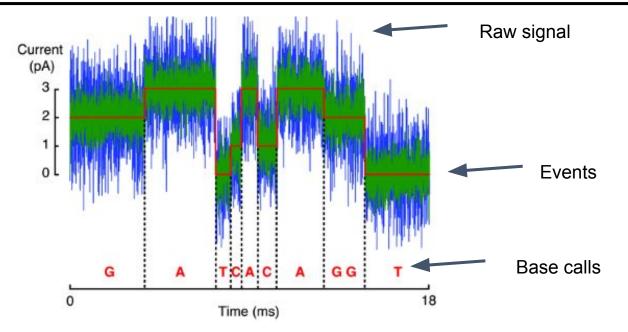
About 5 -15 % of all single reads can be used for this.

Nanopore basecalling



- The length of the passage (pore) determines the signal
- The assumption was that 5 bases fitted in the pore.
- Newer basecallers dropped assumption and derive basecalls directly from the signal

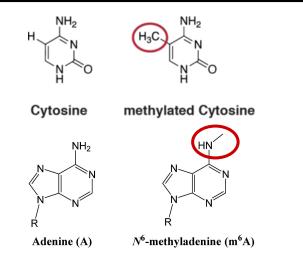
Variation in basecalling



- Translocation time through the pore time is variable
- Depending on the surrounding sequence
- Basecallers need advanced algorithms to deal with this "noisy data".

erinærinstituttet

O'Donnell et al., 2013 - DOI: 10.1002/elps.201300174


Improving basecalling

- Addition of Lambda DNA might improve basecalling per run.
- But the software needs to be able to use that information

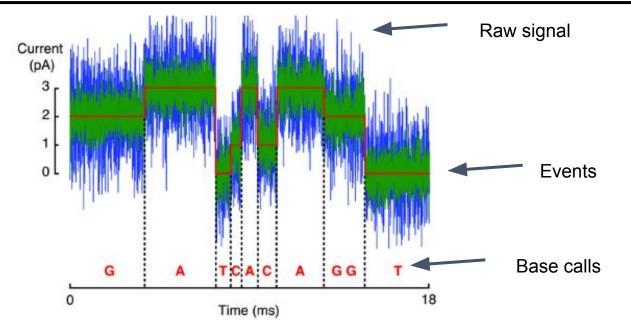
- Norwegian Veterinary Institute O'Donnell et al., 2013 - DOI: 10.1002/elps.201300174

DNA methylation

Methylated nucleotides.

Methylation in Eukaryotes needed for:

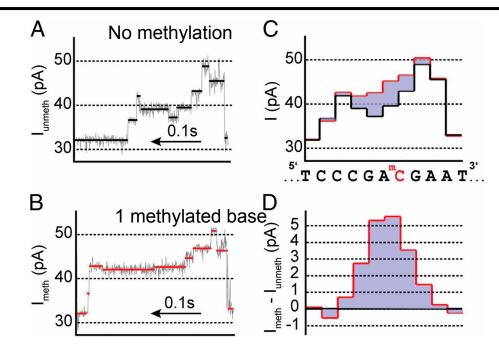
- Gene regulation
- Cell differentiation
- Silencing of mobile elements


Methylation in Prokaryotes:

- Silencing of mobile elements
- Phages recognized
- Gene regulation

DNA methylation ?

• Basecalling is highly variable.


terinærinstituttet

• Methylated bases have a different signal than non-methylated bases.

Norwegian Veterinary Institute O'Donnell et al., 2013 - DOI: 10.1002/elps.201300174

🎄 📻 😤 🍴 🕯

Detecting methylation

Methylation changes the detected current

^{ute} Lazlo et al., - DOI: 10.1073/pnas.1310240110

The nanopore data

FAST5 files contain:

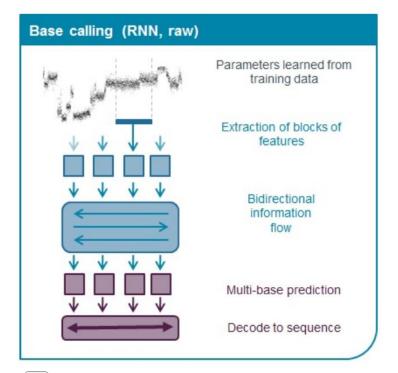
- multiple raw sequences per file
- not demultiplexed
- Good run can produces > 700 files (compressed tar file: > 200 Gb)

FAST5 files are used for Nanopore basecalling.

- Guppy version 6 (only downloadable when you are registered at Nanopore in a team).
- Output from Guppy can be analyzed with Nanoplot to check the quality.
- Guppy can do demultiplexing, previously done by qcat.

POD5 files are recently introduced as a replacement for FAST5 files.

Basecalling software


Many options available:

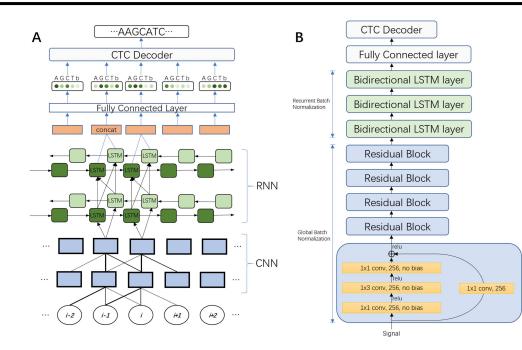
- Nanopore provides several basecallers
 - MINknow (Included in the sequencing software)
 - **Guppy**(standard)
 - Bonito
 - Dorade
- Other groups have also made basecallers for the nanopore machines:
 - Metrichor (In the cloud basecaller, part of minION workflow)
 - Chiron
 - DeepNano
 - \circ etc

Nanopore basecalling

Original basecallers used Hiden Markov Models

Latest basecallers use Recurrent Neural Network (RRN)

To run basecalling software:


Use Graphical Processor Units (GPU),

instead of

Central Processor Units (CPU).

Basecalling software - Chiron

A combined convolutional neural network and a Recurrent Neural Network

Basecalling software - Guppy

A good run gives:

- > 800 Fast5 files (raw signal)
- > 170 Gb data

Basecalling with Guppy (V6) using a GPU.

- < 20 Gb fastq data (quality >= 7)
- time needed: about 48 hrs

Basecalling software - Guppy

Basecalling is dependent on:

- Sequencing machine (e.g. minION/Gridion / Promethion / mk1c)
- Flowcell type (9.4.1 or 10.3 / 10.4)
- Library prep
- DNA / RNA (Proteins) as input
- Interest in DNA modifications (Cytosine methylation)

The models for Basecalling can be found in the folder of each guppy installation:

the latest: /cluster/projects/nn9305k/src/miniconda/envs/guppy_gpu_v6.3/data

Guppy - which model to use?

Flowcell r9 : 55 models

Flowcell r10 : 67 models

dna_r9.4.1_450bps_fast.cfg > Fast basecalling
dna_r9.4.1_450bps_fast_mk1c.cfg > Fast basecalling for the mk1c
dna_r9.4.1_450bps_hac.cfg > High accuracy basecalling
dna_r9.4.1_450bps_sup.cfg > Super High accuracy basecalling
dna_r10.4.1_e8.2_260bps_sup.cfg >

white

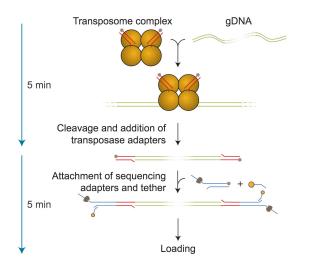
Super High accuracy with newest flowcell 10.4.1 and the kit E8.2 Kit 14

More accurate basecalling takes longer. !!!

Working with the minION

WHAT THE COMPANY SAYS IT LOOKS LIKE

WHAT YOUR PI THINKS IT LOOKS LIKE



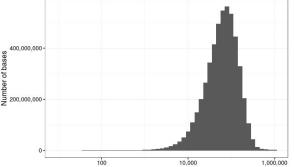
HOW THE ACTUAL DATA LOOKS LIKE

Sequencing library preparation - DNA

Rapid Barcoding Kit protocol

- Input: 200ng HMW DNA
- Typical output:
 - 1-2 Gb in 6 hrs
 - 4-8 Gb in 48 hrs
- Enzymatic Shearing of DNA \rightarrow 40-60 % GC required

A very quick library preparation is possible


Sequencing output

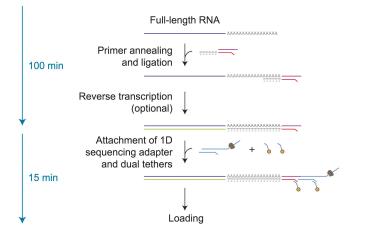
minION output

```
Total bases: 5.014.576.373 (5Gb)
```

Number of reads: 150.604

Read length (template strand) - log10 transformed

N50: 63.747


Mean lenght: 33.296,44

Longest alignable sequence: 2,272,580 bp (2018) Possible due to very careful phenol / chloroform extractions with very pure DNA (260/280 ≈ 2.0).!!!

Sequencing library preparation - RNA

Direct RNA sequencing

- Poly-A tail needed
- **Optional reverse transcriptase** to make cDNA \rightarrow improves output
- Input : 500 ng RNA
- Typical output:
 - < 1 Gb in 6 hrs
 - 1-4 Gb in 48 hrs \cap

RNA is very easily degraded.

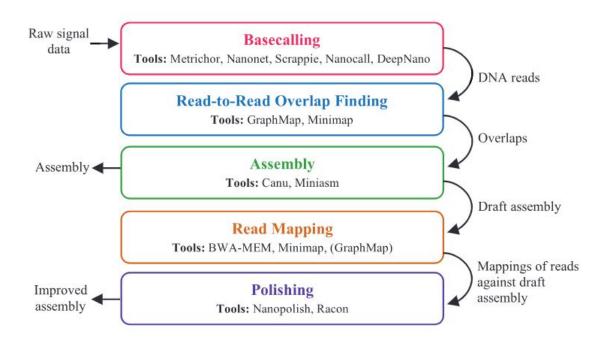
With this "quick" protocol direct sequencing is possible !

MinION applications

- De novo shotgun sequencing (pcr / primer free sequencing)
 - Especially good for repetitive regions
 - Finishing Prokaryote / Eukaryote genomes
 - Detection of structural genome variation (indels)

MinION applications

- Amplicon sequencing
 - Prokaryotes / Eukaryotes: 16S rRNA / 18S rRNA
 - Fungi: ITS-1
 - Animal barcoding: CO1
- Shotgun metagenomics
- Transcriptomics / Direct RNA sequencing


 \rightarrow Detection of RNA isoforms

• Epigenome (methylation) sequencing

De novo genome assembly

Genome assembly

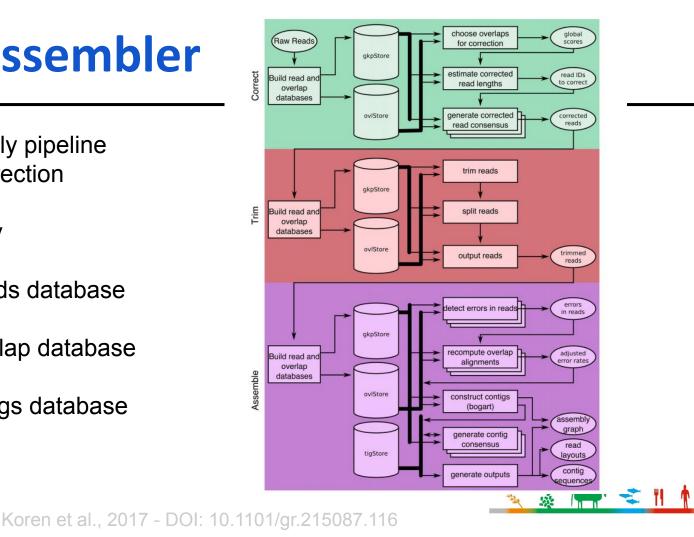
Table 1. Summary of comparisons between long read assemblers. (A) Selected metrics for three benchmarking efforts on MinION reads, including chemistries used in the respective studies. Bold values denote the best score per metric. (B) Short descriptions and reference papers for all assemblers discussed in this paper. I: reads were corrected by Canu prior to assembly.

A	Judge et al.41			Istace et al.40			Giordano et al. ³⁹		
	subs/ kbase	indels/ kbase	N50 (Mbase)	subs/ kbase	indels/ kbase	N50 (Mbase)	subs/ kbase	indels/ kbase	N50 (Mbase)
PBcR	1.0	12.2	1.20				0.2	17	0.616
Canu	0.3	7.8	2.80	0.105	10.0	0.610	0.1	17	0.698
SMARTdenovo				0.580	11.1	0.783	0.3	14	0.625
Minimap & miniasm	6.7	18.6	6.60	0.2071	13.5 <mark>1</mark>	0.736 ¹	34	67	0.739
ABruijn				0.130	10.1	0.816	0.1	15	0.769
Chemistry		MAP006			MAP005/MAP006			MAP006/007	
Read type		2D			2D			2D	
Pore		R7.3			R7.3			R7.3/R9	
Basecaller		EPI2ME			EPI2ME			EPI2ME	
Organism		Enterobacter kobei			S. cerevisiae			S. cerevisiae	
В	Description						Ref.		
PBcR	Celera OLC assembler adapted for long error-prone reads.						42		
Canu	The more accurate successor of PBcR.						43		
SMARTdenovo	Fast and reasonably accurate assembler without prior error correction step.						Github		
Minimap & miniasm	Fast assembly pipeline without error correction and consensus steps.						44		
ABruijn	DBG assembler that fuses unique strings prior to assembly, produces highly contiguous assemblies.							45	
TULIP	uses seed extension principle to efficiently assemble large genomes.						25		
HINGE	Assesses coverage of low complexity regions prior to assembly and processes them more efficiently.						46		

De Lannoy et al., - DOI: 10.12688/f1000research.12012.1

🌂 🎄 🦛 😴 🍴 🛉

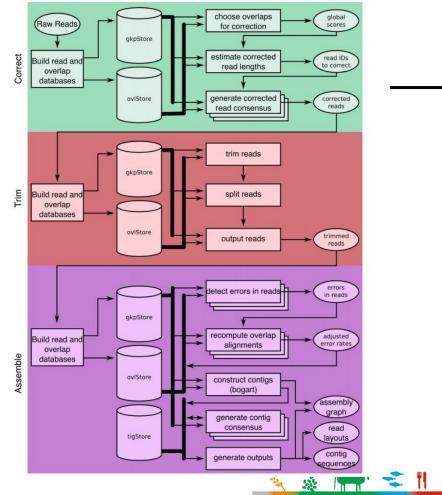
Canu assembler


Canu Assembly pipeline

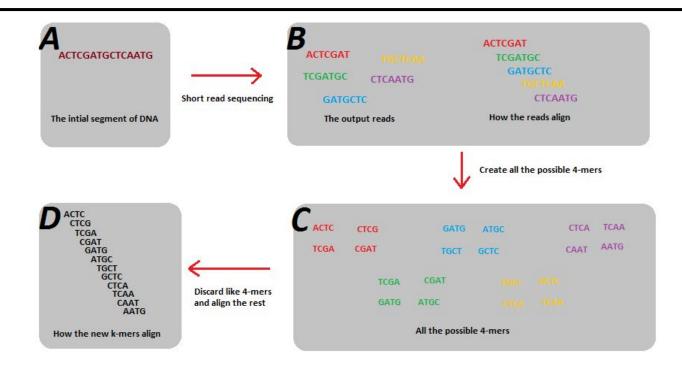
- **Frror** correction 1
- 2. Trimming
- 3. Assembly

gkpStore: reads database

ovlStora: overlap database

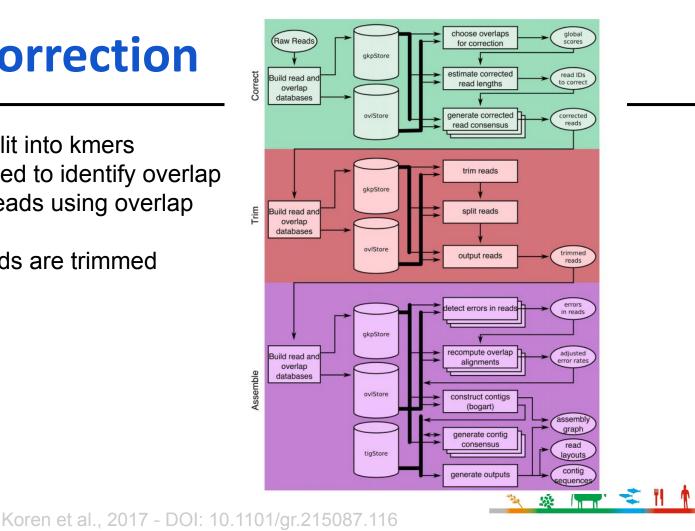

tigStore: contigs database

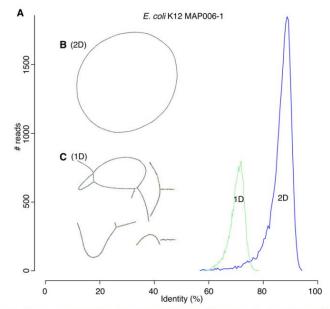
Error correction


- 1. Reads split into kmers
- 2. Kmers used to identify overlap
- 3. Correct reads using overlap

Corrected reads are trimmed

Kmers




Error correction

- Reads split into kmers 1.
- Kmers used to identify overlap 2.
- 3. Correct reads using overlap

Corrected reads are trimmed

Canu assembly E. coli genome

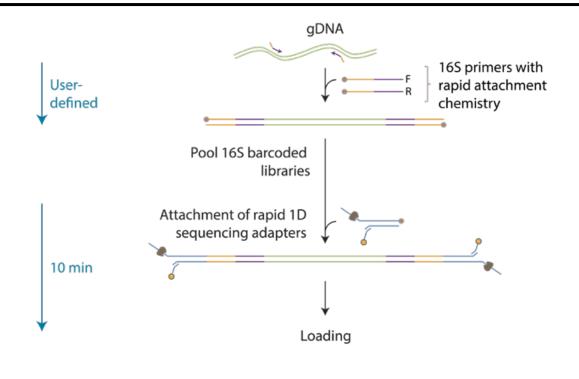
Figure 5. Canu can assemble both 1D and 2D Nanopore *Escherhicia coli* reads. (*A*) A comparison of error rates for 1D and 2D read error rates versus the reference. Template 1D and 2D reads from the MAP006-1 *E. coli* data set were aligned independently to compute an identity for all reads with an alignment >90% of their length (95% of the 2D reads and 86% of the 1D reads had an alignment >90% of their length). The 2D sequences averaged 86% identity, and the 1D reads averaged 70% identity. (*B*) Bandage plot of the Canu BOG for the 2D data. The genome is in a single circle representing the full chromosome. (C) The corresponding plot for 1D data. While highly continuous, there are multiple components due to missed overlaps and unresolved repeats (due to the higher sequencing error rate).

Koren et al., 2017 - DOI: 10.1101/gr.215087.116

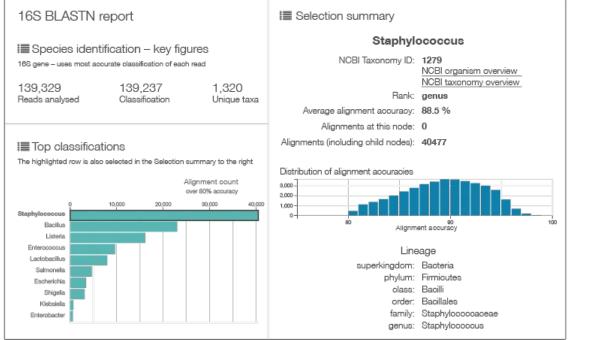
Polishing

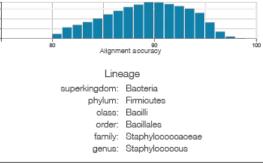
Nanopolish: Improve consensus sequence of assemblies

Options:


- Predict methylated bases
- detect SNPs and indels with respect to a reference genome
- calculate an improved consensus sequence for a draft genome assembly
- align signal-level events to k-mers of a reference genome
 - Align raw sequence data to deal with homopolymers and other hard to analyse sequences

Loman et al., 2015 Nature Methods volume 12, pages 733–735


Amplicon sequencing



Amplicon sequencing

Accuracy is low

Several pipelines available

- NanoClust (16s)
- NanoAmpli-Seq (16S)
- Amplicon sorter
- NGSpeciesID (COI)

. . .

How to generate a consensus?

www.nanoporetech.com

A short comparison

	Illumina	PacBio	minION	
Output (Gb)	7.5 – 6000	5-8	10-50	
Reads (million)	25 – 20-000	0.15 - 1	≈ 0.15	
Read length	150 – 300 bp	0 - 70 Kbp	0 - 800 Kbp	
Pros	 Many reads High quality Tolerant for poor input material 	 Long reads Improve genome assemblies 	 High mobility Long reads Improve genome assemblies 	
Cons	 Fragmented genome assemblies 	 High quality input needed expensive 	 High quality input needed Flowcell has limited shelf life 	

Experimental design important to decide which platform to use.

The End

A few papers:

The long reads ahead: *de novo* genome assembly using the MinION

https://f1000research.com/articles/6-1083/v2

Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis

https://doi.org/10.1186/s13073-015-0220-9

Nanopore sequencing technology, bioinformatics and applications (2021)

• https://pubmed.ncbi.nlm.nih.gov/34750572/

The End

Contact details:

Thomas Haverkamp Thomas.haverkamp@vetinst.no

twitter: @Thomieh

