IN-BIOS[9,5]000 2022

Experimental Design - from a HTS perspective

Arvind Sundaram Oct 18, 2022

Norwegian Sequencing Centre OUS, Ullevål, Oslo

RNA seq analysis pipeline

A survey of best practices for RNA-seq data analysis https://doi.org/10.1186/s13059-016-0881-8

Experimental design

Design of the experiment and **sequencing plan** have a direct effect on downstream analyses and interpretation of data

A survey of best practices for RNA-seq data analysis https://doi.org/10.1186/s13059-016-0881-8

Experimental design

- Biological question
- Platform choice
- Technology variation
 - Technical bias
 - Run/Lane bias
 - Index/barcode bias
 - Duplicates
 - Error rates

- Sample variation
 - * PCR amplification?
- * Sequencing depth
- Data analysis
- Species-specific information
 - * Is there a genome sequence available??
 - * Genome size (c-value)
 - * genomesize.com

Biological question

- Know your targets
 - * Whole genome
 - * Targeted (re)seq
 - * Exome
 - ChIP-seq

Nature Reviews Genetics 15, 121–132 (2014) doi:10.1038/nrg3642

Biological question

- * Know your targets
 - * RNA-seq
 - * rRNA depleted?
 - * polyA enriched?
 - microRNA

BMC Genomics 2014, 15:419 doi:10.1186/1471-2164-15-419

Experimental design

- Short or long fragments
- Short or long reads
- * Single or paired end

Depth requiredCoverage required

Library prep method

- * Multiplexing
 - * single or dual index
 - * more barcodes?

- Replicates
 - biological
 - technical

Platform choice: Read length

llumina

MiniSeq MiSeq NextSeq HiSeq series NovaSeq NovaSeq X

Roche 454 SOLiD Ion Torrent

RS II Sequel

MinION Flongle GridION PromethION P2/solo PromethION 24/48

Illumina data output

Pacbio/Nanopore data output

Indexing

- Dual index possible
- Dual internal barcodes possible
 - multiplex up to 4000 samples.

Technical bias

- * Lane/flowcell bias
- Index/barcode bias
- Batch effect

* Randomisation is key

Error rates

- * Illumina has low error rates
- Pacbio and Oxford Nanopore have relatively high error rates
 - Cyclic sequencing can reduce the error rate in Pacbio
 - 1D² sequencing can reduce the error rate in Oxford Nanopore

 Deep sequencing is used to correct for errors

Sequencing depth and coverage

of biological replicates

Sequencing depth and coverage https://doi.org/10.1038/nrg3642

Sequencing depth and coverage

Techniques	Read counts in representative studies
DNasel-seq and FAIRE-seq	20–50 million
CLIP-seq	7.5 million; 36 million
iCLIP and PAR–CLIP	8 million; 14 million
CHiRP and CHART	26 million
4C	1–2 million
ChIA-PET	20 million
5C	25 million
Hi-C	>100 million
MeDIP-seq	60 million
CAP-seq	>20 million
ChIP-seq	>10 million per sample (point source); >20 million per sample (broad source)

Replicates and Depth

- * Sound experimental design
- Number of replicates
 - Biological variation
 - Technical replicates not so important
- * Sequencing depth

Table 1 Statistical power to detect differential expression varies with effect size, sequencing depth and number of replicates

	Replicates pe	Replicates per group							
	3	5	10						
Effect size (fold	change)	ange)							
1.25	17 %	25 %	44 %						
1.5	43 %	64 %	91 %						
2	87 %	98 %	100 %						
Sequencing depth (millions of reads)									
3	19 %	29 %	52 %						
10	33 %	51 %	80 %						
15	38 %	57 %	85 %						

A survey of best practices for RNA-seq data analysis https://doi.org/10.1186/s13059-016-0881-8

Replicates vs Depth

Table 1. Cost efficiency for power to detect DE genes (cost per 1% power given each experimental design where the variables are). Assumptions made during calculations are described in Methods. * indicates lowest cost per 1% power in each replication level. Units are in dollars.

Relative	2.5M	5M	10M	15M	20M	25M	30M
Cost							
2 replicates	24.2	17.2	14.4*	15.8	16.7	17.0	17.8
3 replicates	23.4	17.2	15.3*	16.3	17.1	18.5	19.4
4 replicates	23.1	17.7	16.5*	17.5	18.6	19.8	21.2
5 replicates	23.8	19.0	18.1*	19.4	21.0	22.8	24.9
6 replicates	25.0	20.7	20.6*	22.4	24.6	27.0	29.4
7 replicates	26.8	23.0*	23.5	26.0	28.7	31.5	34.3

http://www.doi.org/10.1093/bioinformatics/btt688

Depth: example

- * RNA sequencing
 - Highly expressed known transcripts
 - Novel isoforms
 - * Low expressed / rare transcripts

А

More

depth

Design prior to sequencing

- Sources of variation
 - * Dynamic range Not all samples get sequenced the same way
 - * Technical variation biases inherent to the technology
 - Biological variation
- * Controlling for variation
 - Randomisation
 - Blocking: Pool and sequence across several lanes
 - Replication

Pre-processing

- Remove sequencing adapters
- Trim/remove low quality reads
- * Remove sequencing spike-ins (PhiX for Illumina), if any

→ Make sure paired end data is always paired and in correct order!

Simple truth

To consult the statistician after an experiment is finished is often merely to ask him (her) to conduct a post mortem examination. He (she) can perhaps say what the experiment died of.

- Ronald Fischer