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RNA seq analysis pipeline
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Experimental design Sequencing design Quality control
N A A
L ) B L A
Li Seque Replicate number Randomization @ Randomization @ Read
:P"N '.Mﬂ:hll and sequencing depth  SPke-ns? library prep ssquencingrun~ TWISdS  ene  Quanificaion | Reproduchilty
_+ P
Single Longer reads 3 wtmo F«qml*ycomml *Avoldo eonfoum* Bowen?o quality Re*w 3’?!-& Oorrzalon.
Vs better for isoform  or power analysis  and library-size axperimental lactors GC content, uniformity, biotypes, PCA,
palred-end analysls software normalization with technical factors K-mers, duplicates GC content low-counts batch effects
(b) Core-analysis
Transcriptome profifing Differential expression Interpretation
A A A
{ A ' d )
Read Transcript Quantification  Quantification ARomative
alignment dau;vuy .; m.;” Pupn;udng m*w splicing analysis Functional profiling
>
"'"?"" Compare o . Counts, Low-count fitter, Parametric Spldn? events, Ov-ms?m-md
or existing gene-level, RPKM/FPKM, bias removal, Vs, isoform expression functions, GSEA,
assembly annotations exon-level TPM normalization non-parametric pathway analysis
(¢ Advanced-analysis
Visvalization Other RNA-seq integration
N N N
[ A} { . |
Genome Sashimi plots, Small and other  Gene fusion Long-read Single-cell oQTL/SQTL Chromatin TF binding Proteomics/ ’l
browser splice graphs, elc. non-coding ANAs  discovery analysis (e.g. ATAC-seq) (eg. ChlP-ooq) metabolomics

A survey of best practices for RNA-seq data analysis
https:/ /doi.org/10.1186 /s13059-016-0881-8



Experimental design

N N
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Library Sequencing  Replicate number Splke-ins? Randomization @ Randomization @
type length and sequencing depth library prep sequencing run
Single Longer reads 3 replicates For quality control Avoids confounding Sex
Vs better for isoform  or power analysis  and library-size axperimental lactors {
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Design of the experiment and sequencing plan have a
direct effect on downstream analyses and interpretation
of data

A survey of best practices for RNA-seq data analysis
https:/ /doi.org/10.1186 /s13059-016-0881-8



Experimental design

* Biological question * Sample variation
+ PCR amplification?
* Platform choice
“ Sequencing depth
* Technology variation

S * Data analysis
+ Technical bias

* Run/Lane bias * Species-specific information

* Is there a genome sequence

* Index/barcode bias
available??
* Duplicates

+ Genome size (c-value)

* Error rates ) ,
* genomesize.com



http://genomesize.com

Biological question
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Nature Reviews Genetics 15, 121-132 (2014) doi:10.1038 /nrg3642



Biological question
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Experimental design

* Short or long fragments
* Short or long reads

* Single or paired end

* Multiplexing
* single or dual index

“ more barcodes?

“ Library prep method

“ Depth required

* Coverage required

* Replicates

* biological

+ technical



Platiorm choice: Read length

llumina
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# of reads in Millions

[llumina data output

lllumina sequencers
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Pacbio/Nanopore data output
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Indexing

* Dual index possible

# Dual internal barcodes possible

+ multiplex up to 4000 samples.

Fadrosh et al. Microbiome 2014, 2:6

http://www.microbiomejournal.com/content/2/1/6 QTO MicrObiome

METHODOLOGY Open Access

An improved dual-indexing approach for
multiplexed 16S rRNA gene sequencing on the
lllumina MiSeq platform

Douglas W Fadrosh'", Bing Ma'", Pawel Gajer', Naomi Sengamalay', Sandra Ott', Rebecca M Brotman®
and Jacques Ravel'”
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Technical bias

Lane/flowcell bias
Index/barcode bias

Batch effect

Randomisation is key

* Sequence techricd reohcate
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Error rates

+ Jllumina has low error rates

# Pacbio and Oxford Nanopore have .,
relatively high error rates

Cyclic sequencing can reduce the error rate in
Pacbio

1D2 sequencing can reduce the error rate in
Oxtord Nanopore

* Deep sequencing is used to correct for
errors



Frequency of studies

Sequencing depth and coverage
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Sequencing depth and coverage
https:/ /doi.org/10.1038 / nrg3642



Sequencing depth and coverage
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Replicates and Depth

Sound experimental design
Number of replicates

* Biological variation

* Technical replicates -
not so important

Sequencing depth

Table 1 Statistical power to detect differential expression varies
with effect size, sequencing depth and number of replicates

Replicates per group

3 5 10
tffect size (fold change)
1.25 17 % 25 % 44 %
1.5 43 % 64 % S1 %
2 87 % 98 % 100 %

Sequencing cepth (millions of reads)

3 19% 29 % 52 %
10 33% 51 % 80 %
15 38 % 57 % 85 %

A survey of best practices for RNA-seq data analysis
https:/ /doi.org/10.1186 /s13059-016-0881-8



Replicates vs Depth
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Depth: example
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Design prior to sequencing

* Sources of variation

* Dynamic range - Not all samples get sequenced the same way

* Technical variation - biases inherent to the technology

< Bioi_ogical variation

* Controlling for variation
* Randomisation
* Blocking: Pool and sequence across several lanes

* Replication



Pre-processing

* Remove sequencing adapters
* Trim/remove low quality reads

* Remove sequencing spike-ins (PhiX for [llumina), if any

= Make sure paired end data is always paired and in correct order!



Simple truth

To consult the statistician after an experiment is finished is often
merely to ask him (her) to conduct a post mortem examination. He
(she) can perhaps say what the experiment died of.

- Ronald Fischer



