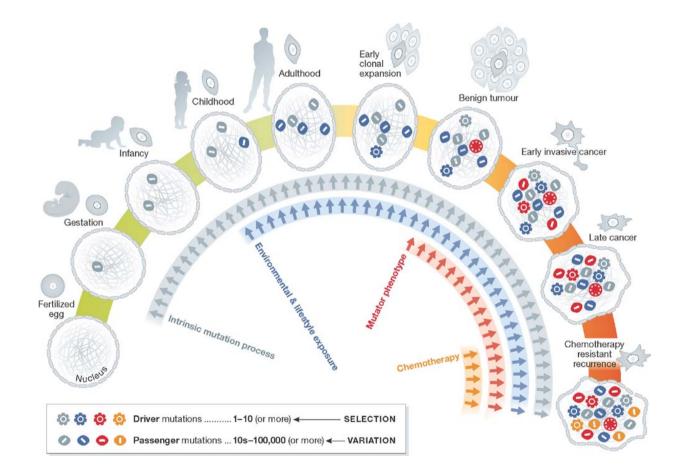
Somatic variant calling and interpretation in the context of cancer

Sigve Nakken Centre for Cancer Cell Reprogramming (CanCell) Dept. of Tumor Biology Institute for Cancer Research Oslo University Hospital

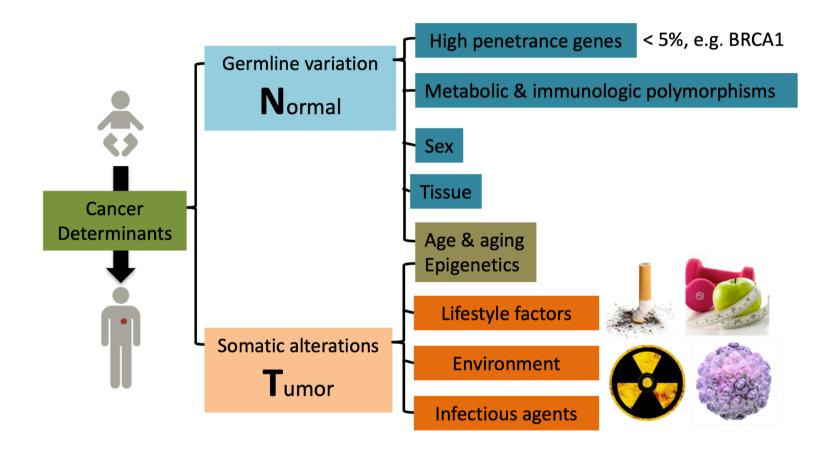
> Centre for Bioinformatics Department of Informatics University of Oslo

IN-BIOS 5000/9000 - Fall 2022

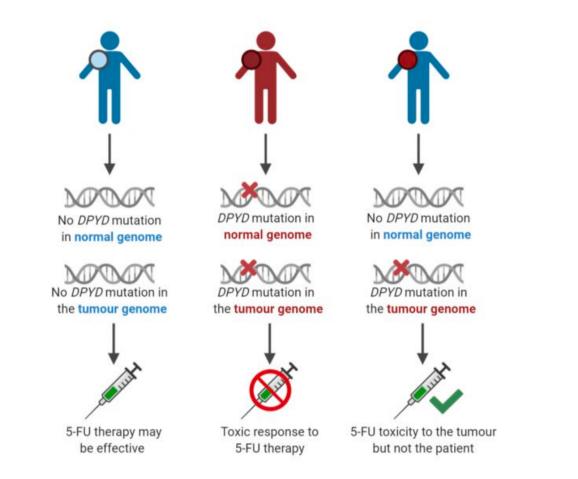
Why cancer?



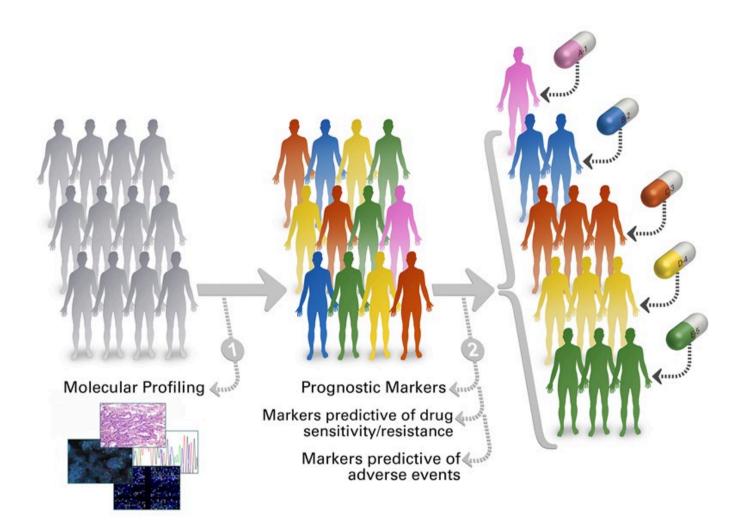
Cancer – a disease of the genome


Stratton et al., EMBO Mol Med, 2013

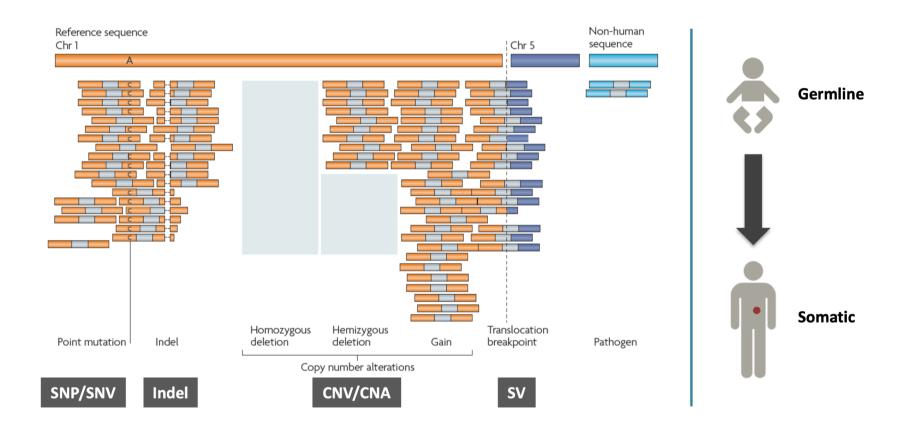
Cancer – a disease of the genome


GATK: Introduction to Somatic Variant Discovery

Cancer sequencing informs on treatment options


https://www.bcgsc.ca/news/genome-sequencing-helps-prioritize-cancer-treatment-options

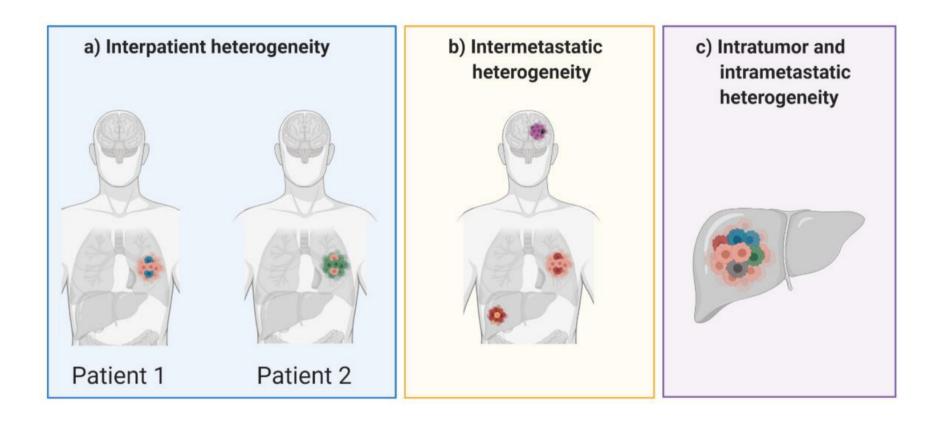
Precision cancer medicine



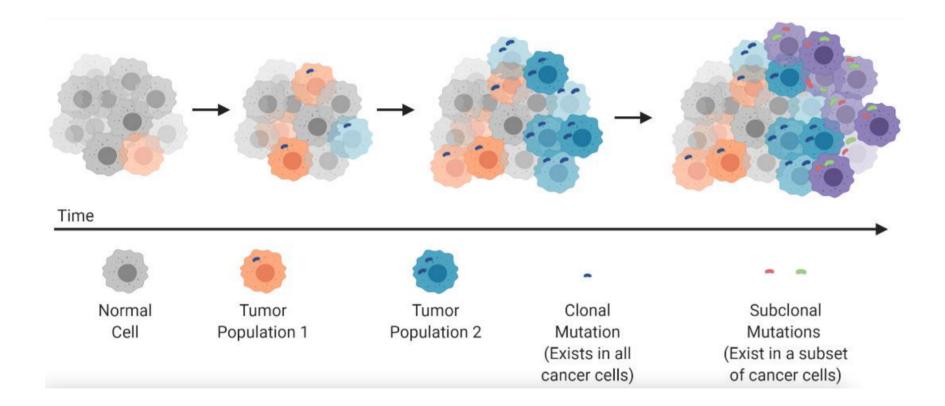
Cancer: multiple types of DNA aberrations

GATK: Introduction to Somatic Variant Discovery

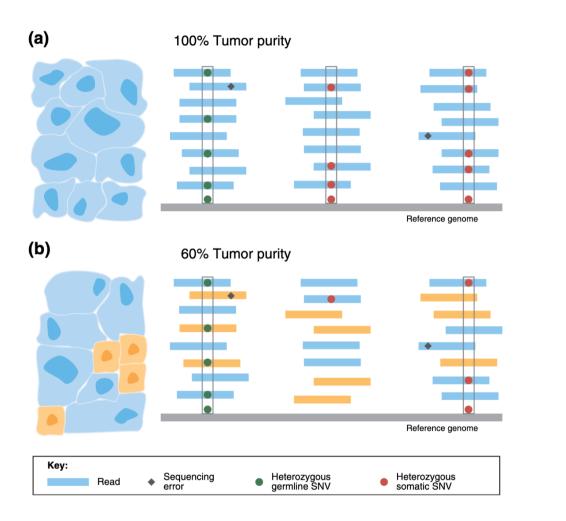
Why is somatic variant calling so challenging?



Cancer complexity

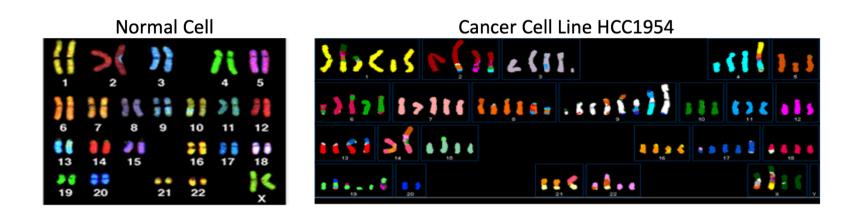

El-Sayes et al., Cancers, 2021

Tumor purity and heterogenity (I)



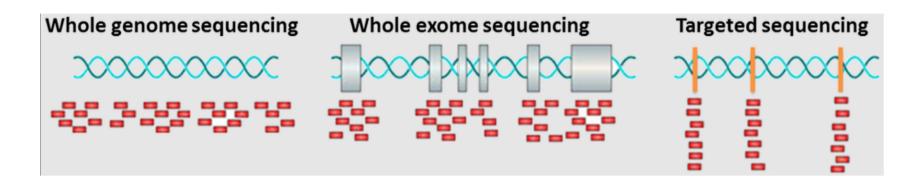
Tumor purity and heterogenity (II)

Raphael et al., Genome Med, 2014


 $Tumor purity = \frac{tumor cells}{(normal + tumor cells)}$

- Deep sequencing
- Implications for targeted sequencing coverage
- Purity is traditionally assessed manually by pathologists, but can also be inferred computationally

Tumor ploidy


• Somatic variant calling: make no ploidy assumption!

Cancer sequencing: assay design

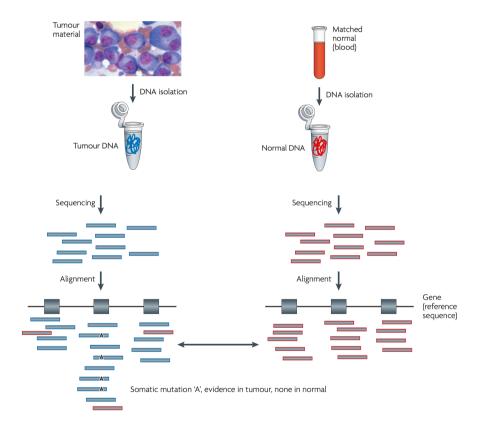
- Typically 30-40x coverage
- More even coverage than WES
- Covers coding and noncoding/regulatory variation
- All types of variants (reliable detection of SVs)

Research

- Typically 80-100x coverage
- Coding regions only
- Cost-effective

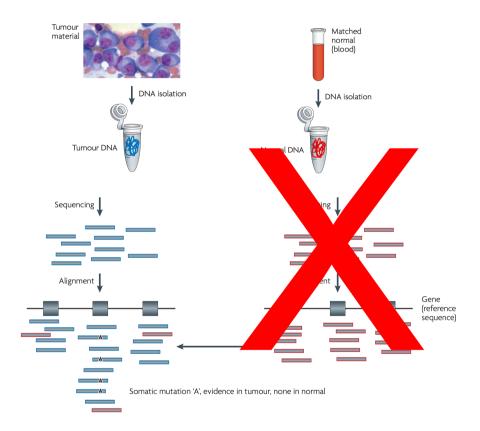
- Typically > 300X
 coverage captures
 subclonal variants at
 low allele frequencies
- Targets custom genes/regions – e.g. clinically actionable genes
- Most cost-effective

Clinical applications



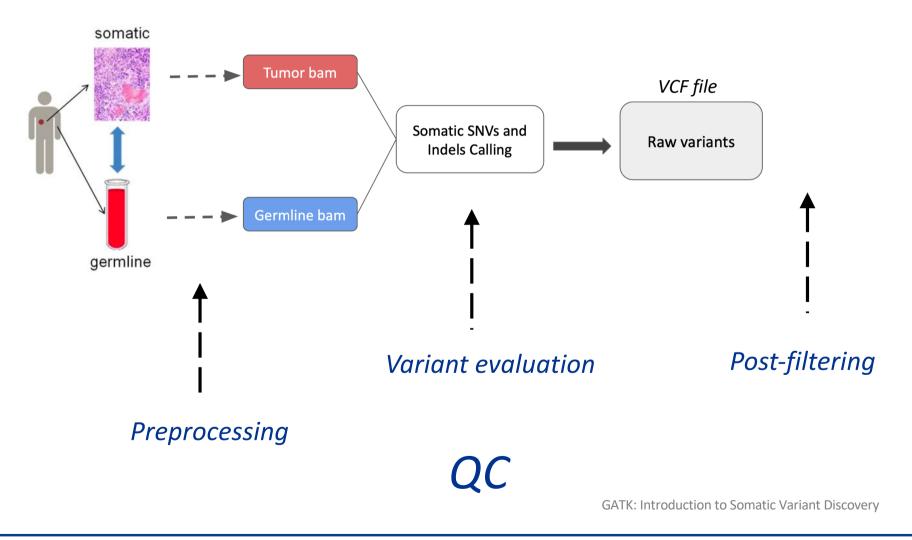
Cancer sequencing: calling design

- Two typical sequencing designs for detection of somatic variants
 - Tumor-control (T + N):
 most accurate

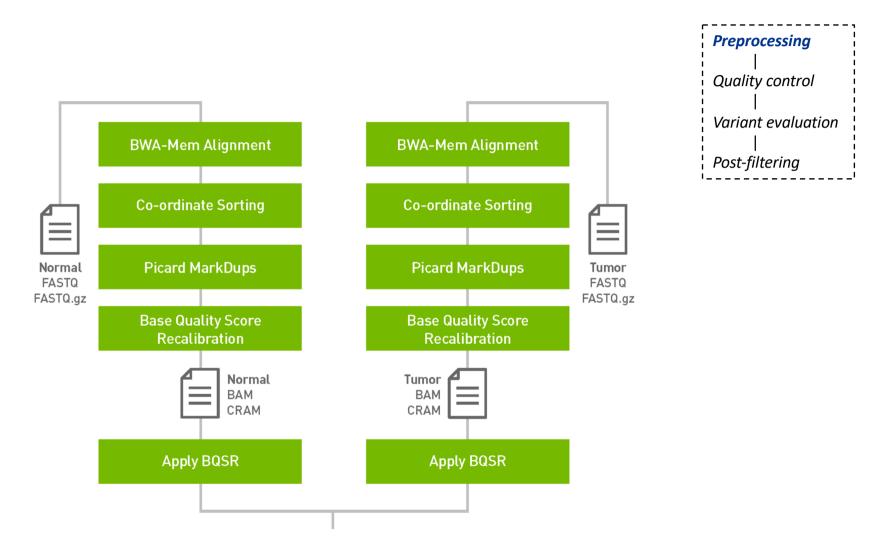


Cancer sequencing: calling design

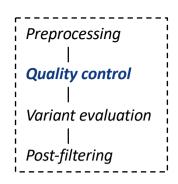
- Two typical sequencing designs for detection of somatic variants
 - Tumor-control (T + N):
 most accurate
 - Tumor-only: most costeffective



Somatic variant calling

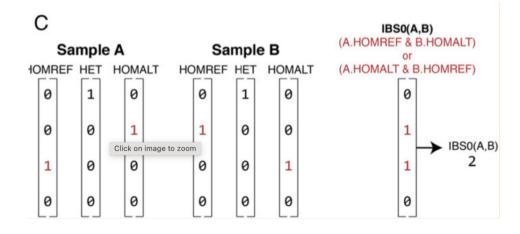


Somatic variant calling: pre-processing


https://docs.nvidia.com/clara/parabricks/v3.0/

Quality control (I)

- Tumor samples subject to oxidative DNA damage during sample preparation could confound variant identification
 - Oxidation-induced C>A:G>T variants
- Detection?
 - Imbalance between complementary nucleotide substitutions
 - Tools: GATK



Quality control (II)

- Cross-sample contamination and sample relatedness
 - Different samples are frequently handled/sequenced together
 - Cross-individual contamination may occur, even small levels of contamination will have an impact on somatic variant detection
 - **T + N:** Check that tumor and normal sample come from the same individual!
 - Tools: Conpair/Somalier

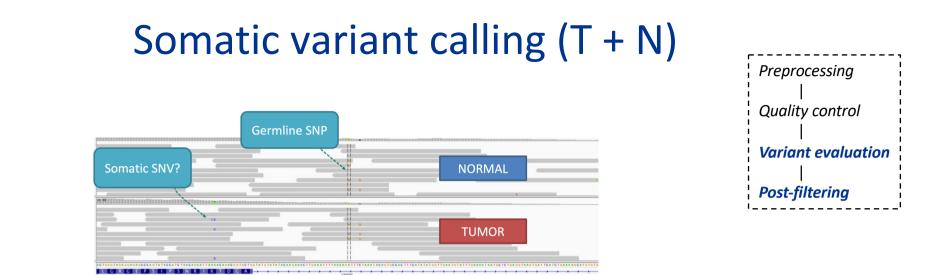
Pedersen et al., Genome Med, 2020

Preprocessing

Quality control

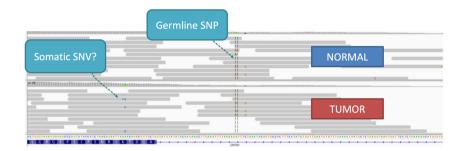

Post-filtering

Variant evaluation



- Logic for somatic variant calling algorithms using tumor-normal design: "substract" the germline background
 - For a given candidate site, is the difference between tumor and normal significant?

- *First generation*: call somatic candidates through heuristic rules/ad-hoc filters
 - Rule out sequencing artefacts by thresholds (number of supporting reads etc)
 - Statistical test of difference between tumor and normal
 - Callers: VarScan2, VarDict
- Second generation: probabilistic modeling of allele frequencies
 - What is the likelihood of non-reference base being somatic, and not sequencing noise (considering base quality, sequence context etc.)?
 - Callers: MuTect2, Strelka2
- **Post-filtering**: add additional quality control on call set (read support, minimum coverage, support on both strands etc.)

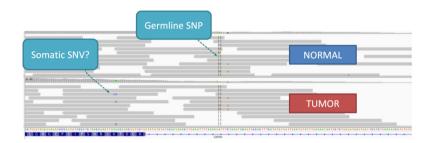


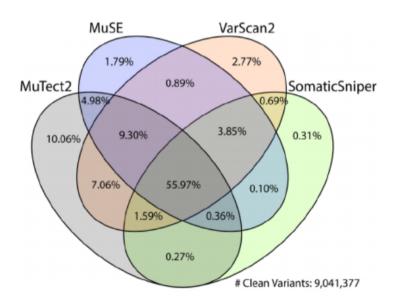
Somatic variant calling (T + N)

- How to choose variant calling algorithm for a particular sequencing project?
 - Check out benchmarking results
 - A few benchmarking datasets are available – providing "gold sets" of somatic mutations
 - Precision vs. recall
 - Benchmarking results are often misleading
 - Which calling parameter values should be used?
 - Check whether the algorithm is designed for your assay and technology
 - E.g. has it shown good performance for detection of subclonal variants at low allele frequencies?

A comprehensive assessment of somatic mutation detection in cancer using whole-genome sequencing

Tyler S. Alioto, Ivo Buchhalter, Sophia Derdak, Barbara Hutter, Matthew D. Eldridge, Elvind Hovig, Lawrence E. Heisler, Timothy A. Beck, Jared T. Simpson, Laurie Tonon, Anne-Sophie Sertier, Ann-Marie Patch, Natalie Jäger, Philip Ginsbach, Ruben Drews, Nagarajan Paramasivam, Rolf Kabbe, Sasithorn Chotewutmontri, Nicolle Diessl, Christopher Previti, Sabine Schmidt, Benedikt Brors, Lars Feuerbach, Michael Heinold, Susanne Gröbner, Andrey Korshunov, Patrick S. Tarpey, Adam P. Butler, Jonathan Hinton, David Jones, Andrew Menzies, Keiran Raine, Rebecca Shepherd, Lucy Stebbings, Jon W. Teague, Paolo Ribeca, Francesc Castro Giner, Sergi Beltran, Emanuele Raineri, Marc Dabad, Simon C. Heath, Marta Gut, Robert E. Denroche, Nicholas J. Harding, Takafumi N. Yamaguchi, Akihiro Fujimoto, Hidewaki Nakagawa, Victor Quesada, Rafael Valdés-Mas, Sigve Nakken, Daniel Vodák, Lawrence Bower, Andrew G. Lynch, Charlotte L. Anderson, Nicola Waddell, John V. Pearson, Sean M. Grimmond, Myron Peto, Paul Spellman, Minghui He, Cyriac Kandoth, Semin Lee, John Zhang, Louis Létourneau, Singer Ma, Sahil Seth, David Torrents, Liu Xi, David A. Wheeler, Carlos López-Otin, Elias Campo, Peter J. Campbell, Paul C. Boutros, Xose S. Puente, Daniela S. Gerhard, Stefan M. Pfister, John D. McPherson, Thomas J. Hudson, Matthias Schlesner, Peter Lichter, Roland Elis, David T. W. Jones & Ivo G. Gut ^{Ta}. - Show fewer authors





Somatic variant calling (T + N)

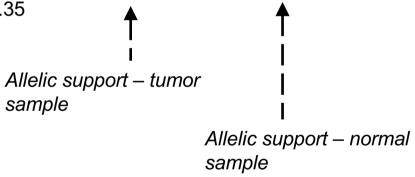
- How to choose variant calling algorithm for a particular sequencing project?
 - Each caller typically has some strengths and weaknesses
 - a common strategy is now to apply multiple callers and combine the variant sets
 - "The wisdom of crowds"
 - Consensus? Majority vote? Machine learning?
 - Combining information from VCF files/callers are frequently challenging in practice

Zhang et al., Nat Commun, 2021

Somatic variant calling: VCF

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT CPCT02080287R CPCT 02080287T

1 854389. G A 590 **PASS**

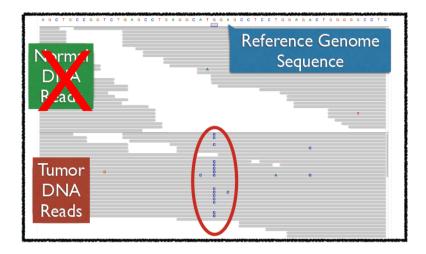

 IMPACT=LINC02593,ENST0000609207,non_coding_transcript_exon_variant,NON

 E,false,n.2008C>T,,,NONE,1

 GT:AD:AF:DP:RABQ:RAD:RC_CNT:RC_IPC:RC_JIT:RC_QUAL:RDP:SB
 0/0:42,0:0:42:152

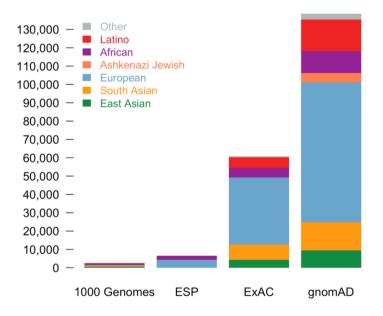
 8,0:42,0:0,0,0,0,0,42,42:0:0,0,0:0,0,0,0,01097,1097:42:0
 0/1:43,20:0.317:63:1626,741:46,21:

 17,3,0,0,0,43,63:0:0,0,0:533,57,0,0,0,1318,1908:67:0.35
 ▲



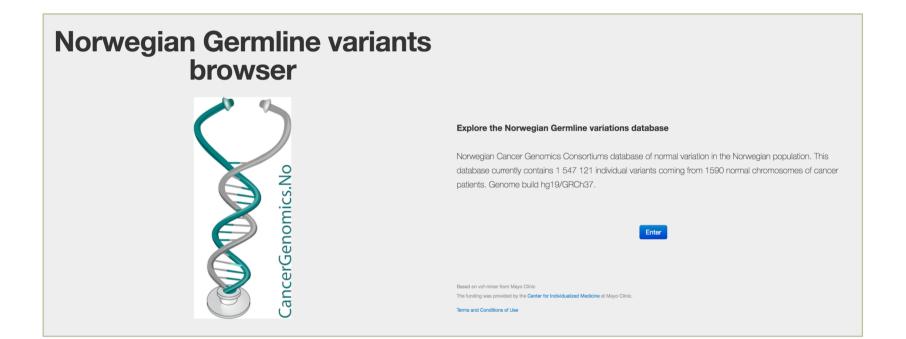
Somatic variant calling: Tumor-only

- Cost-effective strategy for identification of somatic variants much used in the clinic
- Main challenge: robust subtraction of the germline background
 - Approach: use other sources of germline variation (databases)
 - Each individual is estimated to carry an extensive set of rare variants (i.e. *singletons*)
 - Ethnic subpopulations are under-represented in germline variant databases



Tumor-only variant filtering: gnomAD

- genome Aggregation
 Database
- Harmonizes germline variant both exome and genome sequencing data from a wide variety of large-scale sequencing projects
- Freely available to the scientific community
- ~125,000 WES samples
- ~16,000 WGS samples


genome aggregation database

Tumor-only variant filtering: norgene

norgene.no

Tumor-only variant filtering: panel-of-normals

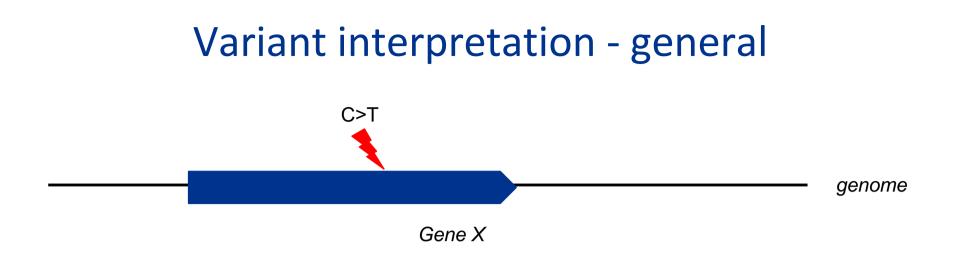
- What is a «panel-of-normals (PON)»?
 - Variant calls made from a set of unrelated "normal" samples
- Purpose of PON?
 - Eliminate common/recurring technical artifacts
 - should use normals made using the same data generation techniques (e.g. same capture kit for exomes, same sequencing platform etc.)
 - Secondary purpose: also eliminates germline variants not called in the matched normal (or approximates the normal if none is available)

GATK: Introduction to Somatic Variant Discovery

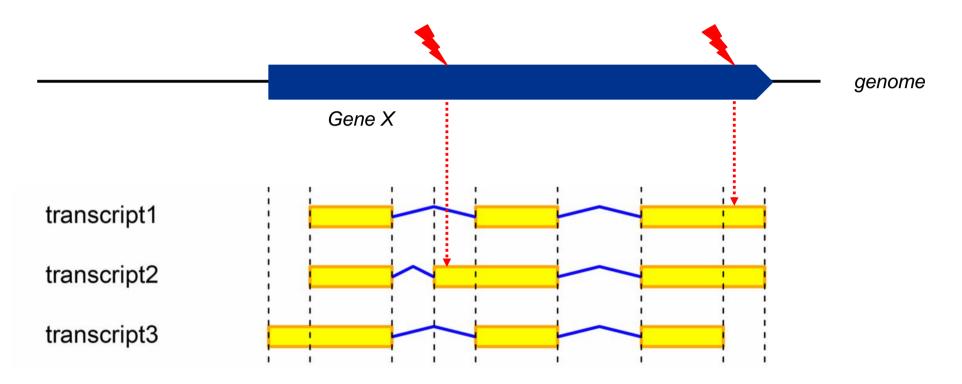
Somatic variant calling: summary

- The complexity of tumors pose challenges for variant identification intratumor heterogeneity, tumor purity, ploidy
- WGS WES Targeted sequencing (research \rightarrow clinic)
- Two fundamental sequencing designs: Tumor-control and tumor-only
- Multiple calling algorithms exist each with strengths and weaknesses a common strategy is to combine output from several callers
- Benchmarking results exist can they be generalized?
- Understand the nature of your data/tumor and the priorities of the variant identification procedure when choosing a calling strategy

Variants have been found – now what?

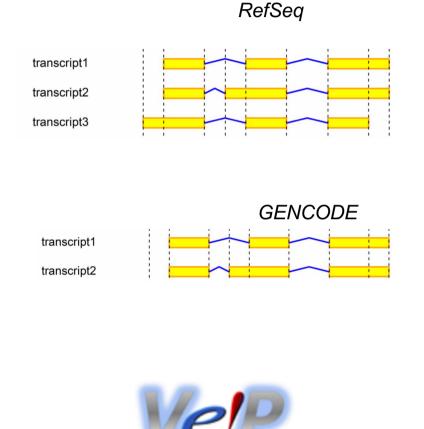

QUESTIONS/BREAK

- **1**. Which genes are affected by variants?
- 2. For a given gene variant, what is the consequence for the encoded protein?
 - Loss-of-function?



Variant interpretation - general

• A gene consists of multiple transcript isoforms



Variant interpretation – general (II)

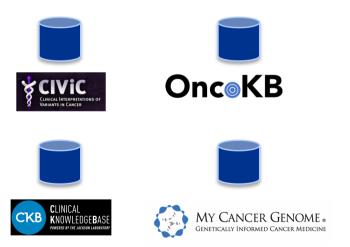
- Several transcript databases
 - o RefSeq
 - o Ensembl
 - GENCODE
- Choice of transcript database impacts variant consequence/ annotation
- Frequent strategy: Report variant consequence in most commonly expressed isoform (i.e. *principal* isoform)

Variant interpretation - cancer

- Variant interpretation for cancer precision medicine
 - Where are the mutations located (which genes are mutated, and which variants are most relevant)?
 - Therapeutic markers (diagnosis and prognosis)
 - Germline (predisposing) + somatic
 - What types of mutations are found?
 - Mutational signatures
 - Tumor etiology, therapeutic and diagnostic markers
 - **How many** mutations are found?
 - Tumor mutational burden immunotherapy

Personal Cancer Genome Reporter

Cancer Predisposition Sequencing Reporter



Which genes are mutated? (I)

- Specific genetic aberrations indicate clinical actionability
 - **o** Drug sensitivity
 - o Prognosis / Diagnosis
 - o Drug resistance
- Multiple initiatives curate clinical variant associations in cancer
 - Variant X in phenotype Y indicates sensitivity to drug Z
 - **Challenge:** harmonization of knowledge databases
 - VICC (Variant Interpretation for Cancer Consortium)

- HER2 amplification Trastuzumab Breast Cancer
- BRAF V600E Vemurafenib Melanoma
- BRAF V600E Trametinib + Dabrafenib NSCLC
- IDH1/2 mutations Ivosidenib AML
- ...
- ...

Which genes are mutated? (II)

- Which somatic aberrations are most relevant in my tumor sample (actionability)?
 - Ranking and standardization frameworks tiers
 - Key: Strength of evidence
 - Tumor type (on-label vs. offlabel)

SPECIAL ARTICLE | VOLUME 29, ISSUE 9, P1895-1902, SEPTEMBER 01, 2018

A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT)

J. Mateo • D. Chakravarty • R. Dienstmann • S. Jezdic • A. Gonzalez-Perez • N. Lopez-Bigas • C.K.Y. Ng • P.L. Bedard • G. Tortora • J.-Y. Douillard • E.M. Van Allen • N. Schultz • C. Swanton • F. André 😤 🖾 • L. Pusztai • Show less

SPECIAL ARTICLE | VOLUME 19, ISSUE 1, P4-23, JANUARY 01, 2017

Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer

A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists

Marilyn M. Li ≳ ⊡ + Michael Datto + Eric J. Duncavage + Shashikant Kulkarni + Neal I. Lindeman + Somak Roy + Apostolia M. Tsimberidou + Cindy L. Vnencak-Jones + Daynna J. Wolff + Anas Younes + Marina N. Nikiforova + Show less

- **TIER 1** strong evidence for clinical impact, same tumor type as query
- **TIER 2** strong evidence for clinical impact in other tumor type or weak evidence for clinical impact in query tumor type
- **TIER 3** uncertain clinical significance; coding variants in tumor suppressor genes/proto-oncogenes (mutation hotspots etc)
- **TIER 4** other coding variants

How many mutations are found?

- Tumor mutational burden (TMB) - number of somatic mutations per megabase of interrogated genomic sequence
- A key driver in the generation of immunogenic neopeptides

 influences response to immune checkpoint inhibitors (ICIs)

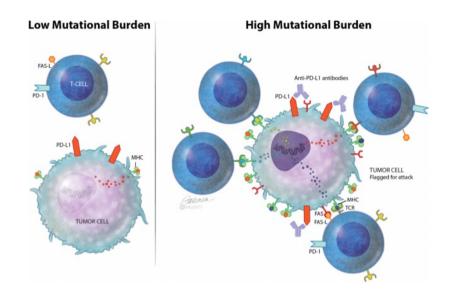
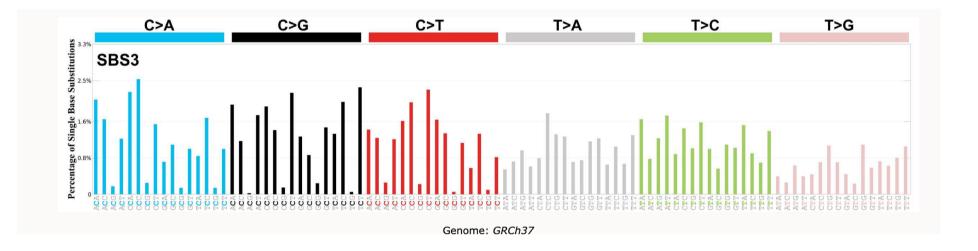


Illustration from Sharabi et al., The Oncologist (2017)

What types of mutations are found?

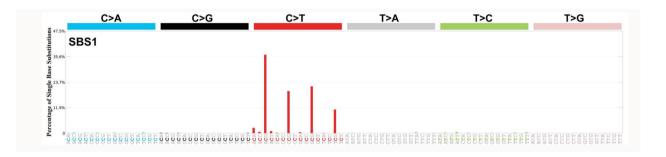
- **Mutational signatures:** characteristic mutation patterns (types and sequence context) that arise from a specific mutational process
- **Premise**: mutational processes are context-dependent (occur non-randomly in DNA)
- Footprint: The global set of mutations harvested from NGS reveals a «historical footprint» of the mutational processes that have shaped a given tumor
 - Environmental mutagens
 - Endogenous mutation processes (e.g. DNA repair defects)
 - Treatment effects
 - Approximatly 50 established mutational signatures



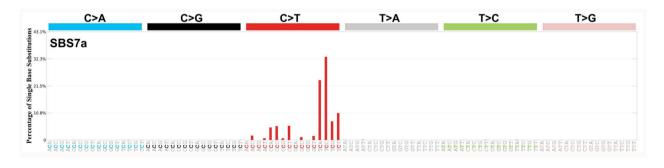
Mutational signatures (I)

- Mutational signatures are most commonly presented through the 96-channel approach (single base substitutions, SBS)
 - Mutation type + flanking bases

• A single signature (attributed to a given process) is thus characterized as the **relative frequency of 96 different channels**



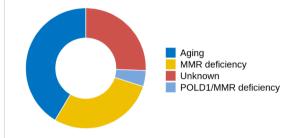
Mutational signatures (II)

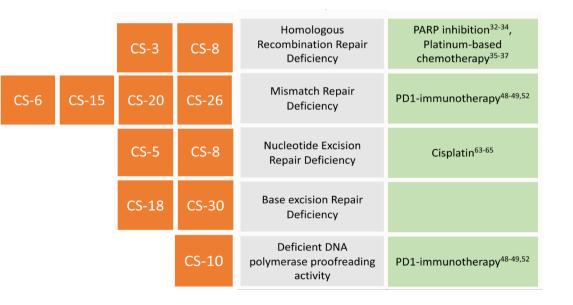

• Aging

 spontaneous or enzymatic deamination of 5-methylcytosine to thymine (clock-like signature)

• Exposure to UV light

o cyclobutane pyrimidine dimers or 6-4 photoproducts

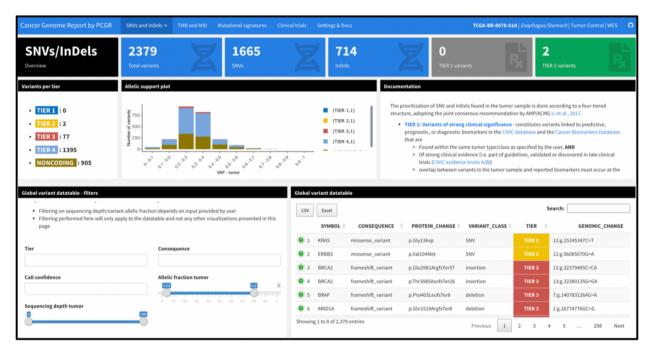




Mutational signatures (III)

- Tools can «deconstruct» the profile of somatic mutations in a tumor towards contribution of known signatures
- Signatures are emerging as an important biomarker for drug response
- Often considered in combination with other markers
- Challenge: confidence

Adopted and modified from Van Hoeck et al., BMC Cancer, 2019

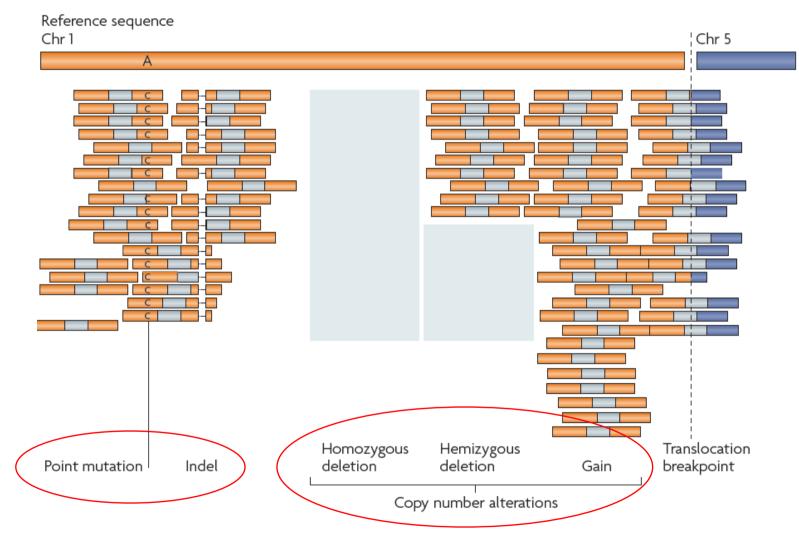


 In brief: A reporting engine for clinical interpretation of tumor genomes (VCF → interactive report)

Nakken et al., Bioinformatics, 2017

https://github.com/sigven/pcgr

- PCGR captures current knowledge on cancer precision medicine through data integration of publicly available databases
 - Targeted cancer drugs
 - Known biomarkers for prognosis and diagnosis
 - Known biomarkers for drug sensitivity/resistance
 - Mutational hotspots in cancer
 - 0 ++

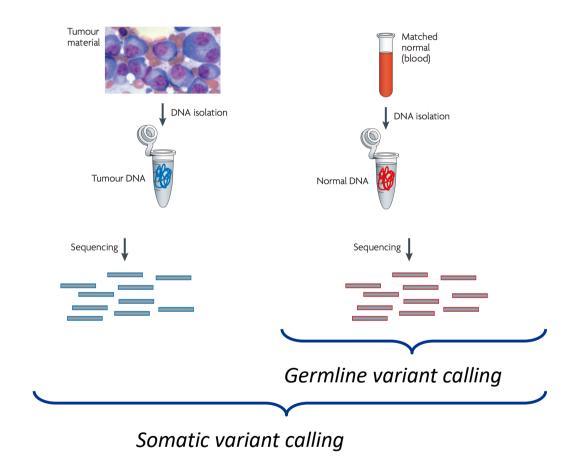


Meyerson et al. Nat Rev Genet 2010

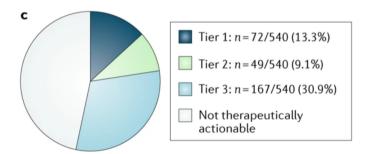
Cancer Genome Report by PCGR	SNVs and InDels - SCNA - TMB an	d MSI Mutational signatur	es Clinical tri	als Settings & Docs		т	CGA-EW-A1J5-01A Breas	t Tumor-Control WGS 💦 🛛 🗭
TIER 2 SNVs and InDels	1 Biomarker genes	1 Biomarker variants	Z	O Diagnostic evidence items		gnostic evidence items	R 6 Predictiv	e evidence items
Tier 2 variant evidence items - filters		Tier 2 - variant evidence i	items					
Evidence items associated with variants in explored according to various criteria :		CSV Excel	SYMBOL	PROTEIN_CHANGE	CANCER_TYPE 🖨	EVIDENCE_LEVEL \$	Search: CLINICAL_SIGNIFICAN	
Cancer type	Consequence	• 1	РІКЗСА	p.Glu545Lys	Lung Adenocarcinoma	B: Clinical evidence	Resistance	Predictive
Clinical significance Resistance	Evidence type Predictive	3	РІКЗСА	p.Glu545Lys	Her2-receptor Positive Breast Cancer	D: Preclinical evidence	Resistance	Predictive
Evidence level	Biomarker mapping	5	РІКЗСА	p.Glu545Lys	Her2-receptor Positive Breast Cancer	D: Preclinical evidence	Resistance	Predictive
Rating	Therapeutic context	7	PIK3CA	p.Glu545Lys	Her2-receptor Positive Breast Cancer	D: Preclinical evidence	Resistance	Predictive
NOTE: Reported biomarkers in CIViC/CGI a (i.e. filter Biomarker mapping). The accur tumor sample and the reported biomarker gene symbols with different color backgro • Biomarker match at the exact variance • Biomarker match at the exon/gene	racy of a match between variants in the rs will vary accordingly (highlighted by uunds): ant/codon level	Showing 1 to 4 of 4 entries	s (filtered from 7 t	otal entries)				Previous 1 Next

Cancer Genome Report by PCGR SNVs and InDels SCNA TMB and	MSI Mutational signatures Clinical trials Settings & Docs	TCGA-14-0866-01B CNS/Brain Tumor-Control WES
SCNA Overview Copy number gains	50 Copy number losses I TIER 1 biomarkers	6 TIER 2 biomarkers
Copy number segments - filters	Copy number segments	
The following user-defined thresholds determine copy number aberrations shown here:	CSV Excel	Search:
• Copy number amplifications : Log(2) ratio >= 0.4	SEGMENT 🔶 SEGMENT_LENGTH_MB 🔶 CYTO	DBAND LOG_R EVENT_TYPE
• Homozygous deletions : Log(2) ratio <= -0.4	1 <u>chr7:54942675-55577616</u> 0.63494 chr7:p11.2	3.471 focal
A total of 57 unfiltered aberration segments satisfied the above criteria.	2 <u>chr7:24039878-24040383</u> 0.0005 chr7:p15.3	2.207 focal
 A total of 57 copy number segments satisfy the current filtering criteria. 	3 <u>chr7:705284-24035127</u> 23.32984 chr7:p22.3 - p	15.3 0.476 broad
Log-ratio	4 <u>chr7:24126318-52647610</u> 28.52129 chr7:p15.3 - p	12.1 0.465 broad
-6.208 3.471	5 <u>chr7:82610187-158385118</u> 75.77493 chr7:q21.11-	q36.3 0.462 broad
	6 <u>chr7:63112265-82605569</u> 19.4933 chr7:q11.21 -	q21.11 0.453 focal
Cytoband	7 <u>chr20:455764-62219837</u> 61.76407 chr20:p13 - q	13.33 0.452 broad
	Showing 1 to 10 of 57 entries	
Event type		Previous 1 2 3 4 5 6 Next
Key findings	Documentation	
	Somatic copy number aberrations identified in the tumor sample are classified into tw	vo main tiers:
- Proto-oncogenes subject to amplifications: 28	• TIER 1: Aberrations of strong clinical significance - constitutes amplified/lost	genes linked to predictive, prognostic, or diagnostic biomarkers in the CIViC
- Tumor suppressor genes subject to homozygous deletions: 19	database and the Cancer Biomarkers Database that are • Found within the same tumor type/class as specified by the user, AND	
- Other drug targets subject to amplification: 18	 Of strong clinical evidence (i.e. part of guidelines, validated or discovered TIER 2: Aberrations of potential clinical significance - constitutes amplified/li 	
	database and the Cancer Biomarkers Database that are either	
	 Of strong clinical evidence in other tumor types/classes than the one species Of weak clinical evidence (early trials, case reports etc. (CIVIC evidence le 	
	Included in the report is also a complete list of all oncogenes subject to amplification	ns. tumor suppressor genes subject to homozygous deletions, and other drug

Cancer Genome Report by PCGR SNVs	and InDels 👻 TMB and MSI	Mutational signature	s Clinical trials	Settings & Docs	т	CGA-BR-8078-01A	Esophagus/Stomach Tumor-Contr	rol WES 🛛 🔿
SIGNATURES Mutational Signatures (SBS)	1665 SNVs eligible for analysis	Z	MMR d	eficiency	99.3 Accuracy of signature fitting (%)		O High confident kataegis events	
Mutational signatures - aetiology contributions		Mutational signat	ıres - aetiologies					
		CSV Excel					Search:	
		signature	id 🕴 contribution	n 🌵 group	aetiology		comments	0
Aging AlD/APC MMR dei POLDTi ROS dar	liciency nutant/MMR deficiency	3 SBS44	17.3%	MMR deficiency	Defective DNA mismatch repair.	defective DNA mis	even mutational signatures associat smatch repair (MSI) and is often fou other MSI associated signatures: SB S21, and SBS26.	nd in the
Sequence Unknown	ing artefact	4 SBS15	11.8%	MMR deficiency	Defective DNA mismatch repair.	defective DNA mis	even mutational signatures associat smatch repair (MSI) and is often four other MSI associated signatures: SB S26, and SBS44.	nd in the
		Showing 1 to 10 of	L1 entries				Previous 1	2 Next
Mutational context frequency Genomic distribut	ion - rainfall Kataegis events		8			16 17 18 1	19 20 21 22 X Y	 C>A C>G C>T T>A
			Gen	omic Location				


Cancer Genome Report by PCGR	SNVs and Ini	nDels 👻 sCNA 👻 TMB and MS	SI Mu	utational signatures Clinical trials	Settings & Docs	TCGA-BR-8078-01A Esoph	hagus/Stomach Tumor-Control WES
Clinical trials (B Molecularly targeted trials	eta)	116 Not yet recruiting		437 Recruiting	10 Enrolling by invitation	67 Active, not recruiting	1 Unknown status
Molecularly targeted trials - filters			Molecu	cularly targeted trials			
(e.g. inclusion/exclusion criteria) att established molecular biomarkers ir		0 1	CSV	V Excel			Search:
Condition (cancer subtype)	Phase			NCT_ID 0 TITLE	♦ OVERALL_STATUS ♦ CONDIT	ION 🕴 KEYWORD 🌵 INTERVE	ENTION PHASE START_DATE
Status Drug(s)	Gender All Female Male		46	A Phase I/II Study of MEDI4736 in Combination Wit 464 NCT02734004 Olaparib in Patients With Advanced Solid Tumors.		ER Positive, HER2 Negative, HR deficiency/PARPi, Immunotherapy, PR Positive, Radiotherapy	nab, 1.5 2016-03-17
	Minimum a	age	PRIN	IMARY_COMPLETION_DATE 2022-08-05			
Drug target(s)	0 8 36	76		NDITION_RAW Malignant Gastric Neoplasn REVENTION_RAW Bevacizumab, Durvalur			
Therapeutic context mentions (text-	Maximum a	age 100	INTE	ERVENTION_TARGET CD274, PARP1, PARF	P2, PARP3, VEGFA		
mined) ER Positive, HER2 Negative, HR	20 28 36	44 52 60 68 76 84 92 100		MARKER_INDEX ATM mutation, BARD1 mi tation, HER2 negative	nutation, BRCA1 mutation, BRCA2 mutation,	BRIP1 mutation, CDK12 mutation, CHEK1	mutation, HER2 gene mutation, HER2
deficiency/PARPi, Immunotherapy, PR Positive, Radiotherapy	Metastase	es mentions (text-mined)	MET	TASTASES_INDEX Bone Metastases Brain N	Metastases		
111000000,000000,0000,000			GEN	NDER All			
Biomarker mentions (text-mined)			MIN	NIMUM_AGE 18			
			MAX	XIMUM_AGE 100			
			Showin	ving 1 to 1 of 1 entries (filtered from 644 tot	tal entries)		Previous 1 Next

Cancer patients - germline background


Cancer predisposition interpretation

- Goal: Identify pathogenic variants (germline) conferring increased risk of tumor development
- Why important?
 - Implement surveillance and risk-reducing interventions
 - May impact type of surgery (radical /conservative)
 - Targeted therapy implications
 - BRCA (PARP)

<u><u>nature</u> clinical <u>REVIEWS</u> oncology</u>

Review Article | Published: 19 February 2019

Therapeutic implications of germline genetic findings in cancer

Clinical actionability - TCGA

Cancer Predisposition Sequencing Reporter

- CPSR: Flexible reporting tool for interpretation of sequencing screens for cancer predisposition
- Which germline variants confer risk of tumor development? Tier structure
 - Pathogenic
 - o Likely pathogenic
 - o Unclassified variants
 - o Likely Benign
 - o Benign
- Automated pathogenicity classification
 - Predicted loss-of-function
 - o population allele frequency
 - o ++

Nakken et al., Int J Cancer, 2021

 Incidental findings can also be reported The report is generated with cpsr version 0.4.0, (pcgr version 0.8.0), using the following key settings:

- Genome assembly: grch37
- Report theme (Bootstrap): default
- Control population gnomAD: Non-Finnish European non-cancer subset
- Upper MAF threshold (gnomAD) for unclassified variants included in report: 0.9
 Show GWAS hits in report: TRUE
- Minimum p-value for association: 0.000005
- Cancer predisposition geneset:
 - Adult solid tumours cancer susceptibility v1.7
 - Diagnostic-grade/Borderline/Low evidence (GREEN/AMBER/RED)

APC	ATM	BAP1	BMPR1A	BRCA1	BRCA2	BRIP1
CDC73	CDH1	CDK4	CDKN1B	CDKN2A	DDB2	DICER1
ERCC2	ERCC3	ERCC4	ERCC5	FANCA	FANCB	FANCC
FANCE	FANCF	FANCG	FANCI	FANCL	FH	FLCN
KIT	KRAS	MAX	MEN1	MET	MLH1	MSH2
MUTYH	NF1	NF2	NRAS	NTHL1	PALB2	PMS2
POLE	POLH	PTCH1	PTEN	PTPN11	RAD51C	RAD51D
RB1	RET	RTEL1	SDHA	SDHAF2	SDHB	SDHC
SHOC2	SMAD4	SMARCA4	SMARCB1	SOS1	STK11	SUFU
TERT	TMEM127	TP53	TSC1	TSC2	VHL	WRAP53
ХРА	XPC	ACD	AIP	BRAF	CHEK2	CTC1
ERCC1	EXT1	EXT2	LZTR1	MAP2K1	MAP2K2	PARN
RIT1	SLX4	SOS2	TINF2	NOP10	PDGFRA	SPRED1
ClinVar varia	ants, n = 4	Pathogenic Likely_Path VUS Likely_Ben Benign	nogenic	ts, CPSR-clas		Pathogenic .ikely_Pathogenic /US .ikely_Benign 3enign

https://github.com/sigven/cpsr

Cancer Predisposition Sequencing Reporter

- Flexible reporting tool for interpretation of sequencing screens for cancer predisposition
- Which germline variants confer risk of tumor development? Tier structure
 - Pathogenic
 - o Likely pathogenic
 - o Unclassified variants
 - Likely Benign
 - o Benign
- Automated pathogenicity classification
 - Predicted loss-of-function
 - o population allele frequency
 - O ++
- Incidental findings can also be reported

• A	total of n = 4	non-ClinVar va		clinical significance in Clin in ClinVar) are classified wit riant effect).		gnificance by CPSR
ClinV	ar Non-C	ClinVar				
Consec	quence			CPSR classification	(ACMG criteria co	odes)
Genoty	pe			CPSR pathogenicity	score	
] hete	rozvaous					
Gene	lozygous			5 5	5	5
Gene	01 POLE			MAF gnomAD (Non-I	5 Finnish European	5 non-cancer subse
Gene				MAF gnomAD (Non-I	5 Finnish European	5 n non-cancer subse
Gene				MAF gnomAD (Non-I	5 Finnish European Search:	5
Gene POLD	D1 POLE	♦ SOURCE	♦ CONSEQUENCE ♦	MAF gnomAD (Non-I		a non-cancer subse
Gene POLD	D1 POLE	SOURCE Other	CONSEQUENCE frameshift_variant	0	Search:	
Gene POLD	D1 POLE			PROTEIN_CHANGE \$	Search:	GENE_NAME DNA polymerase epsilon, catalytic

https://github.com/sigven/cpsr

Nakken et al., Int J Cancer, 2021

Oslo University Hospital Norwegian Radium Hospital

Cancer Predisposition Sequencing Reporter

- Flexible reporting tool for interpretation of sequencing screens for cancer predisposition
- Which germline variants confer risk of tumor development? Tier structure
 - Pathogenic
 - o Likely pathogenic
 - o Unclassified variants
 - o Likely Benign
 - o Benign
- Automated pathogenicity classification
 - Predicted loss-of-function
 - o population allele frequency
 - o ++
- Incidental findings can also be reported

Genomic biomarkers

• Variants (class 4/5) in the guery sample that overlap with reported clinical biomarkers from the database for clinical interpretations of variants in cancer, CIViC are considered. Note that several variants in the query can overlap the same existing biomarker, given that biomarkers are reported at different resolutions (variant/gene level). Total number of clinical evidence items that coincide with query variants: • Predisposing: 1 evidence items Predictive: 2 evidence items Prognostic: 0 evidence items · Diagnostic: 0 evidence items Predisposina Predictive Prognostic Diagnostic Cancer type Gene **Clinical significance Biomarker mapping** Evidence level Therapeutic context The table below lists all variant-evidence item associations: Search CSV Excel SYMBOL GENE NAME CANCER TYPE CLINICAL SIGNIFICANCE EVIDENCE LEVEL Plexiform NF1 neurofibromin 1 Sensitivity/Response **B:** Clinical evidence Neurofibroma DNA polymerase Glioblastoma POLE 2 epsilon, catalytic Sensitivity/Response Multiforme subunit

Nakken et al., Int J Cancer, 2021

https://github.com/sigven/cpsr

Showing 1 to 2 of 2 entries

Next

1

Previous

Variant interpretation in cancer: summary

- Comprehensive DNA variant interpretation is critical for implementation of precision cancer medicine
- Types of mutations, number of mutations, mutation locations
 all may have therapeutic implications
- Variant consequences are transcript-specific
- A large number of resources have been erected to facilitate clinical interpretation of cancer genomes
- Variant prioritizaton: tier structure
- Interpretation of the germline background of cancer patients adds an additional dimension for clinical interpretation

Thanks for your attention.