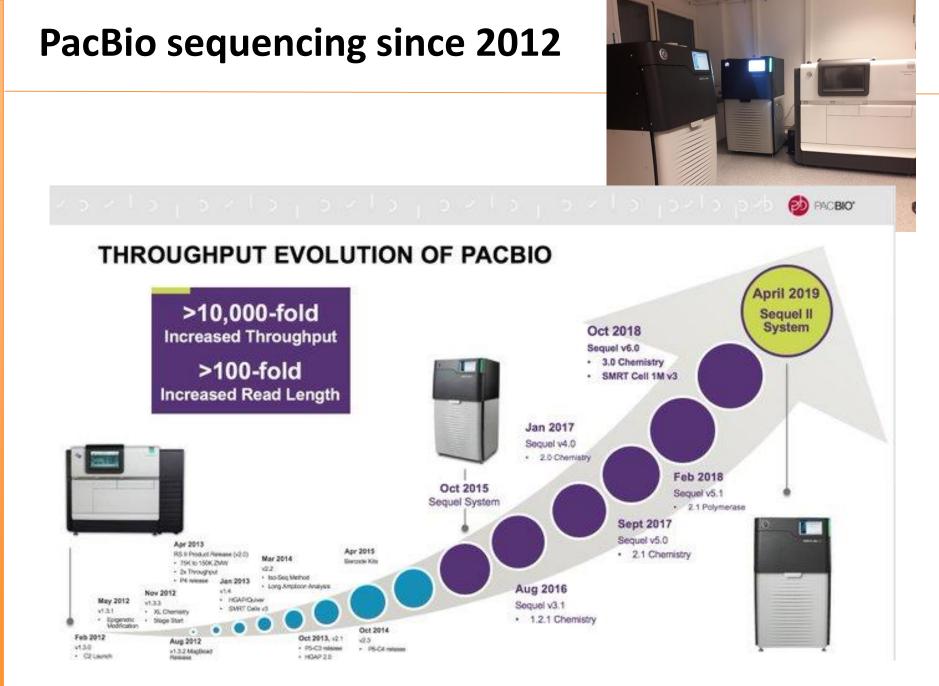
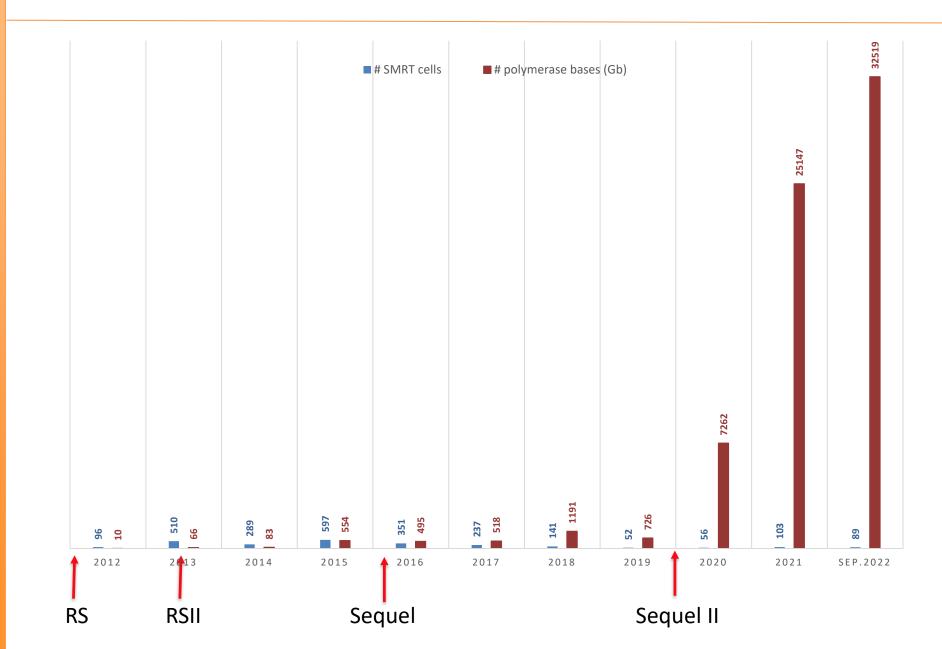
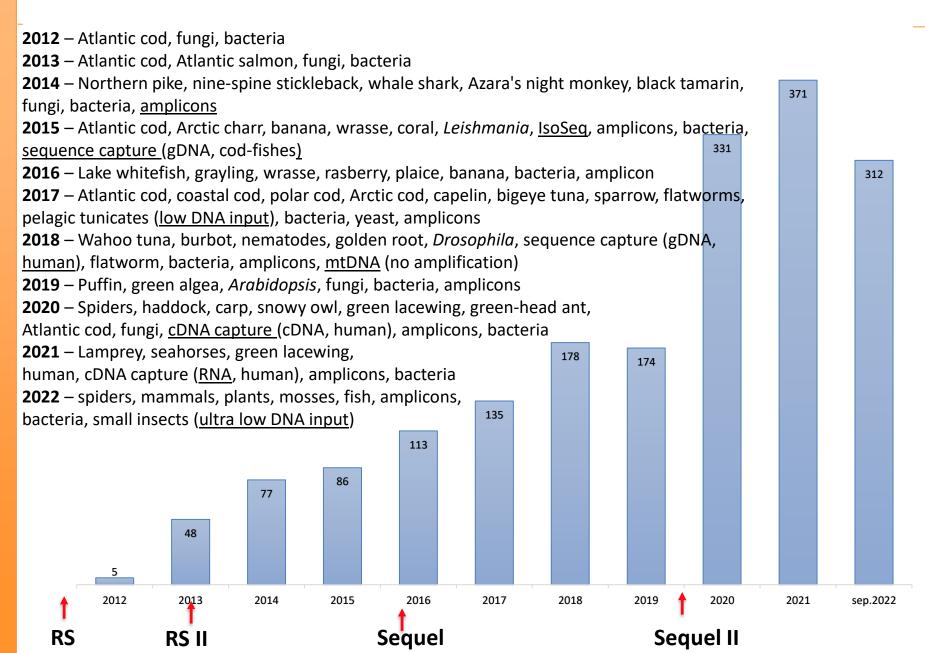


NORWEGIAN SEQUENCING CENTRE

PacBio long read sequencing


Ave Tooming-Klunderud, NCS/CEES/UiO, ave.tooming-klunderud@ibv.uio.no

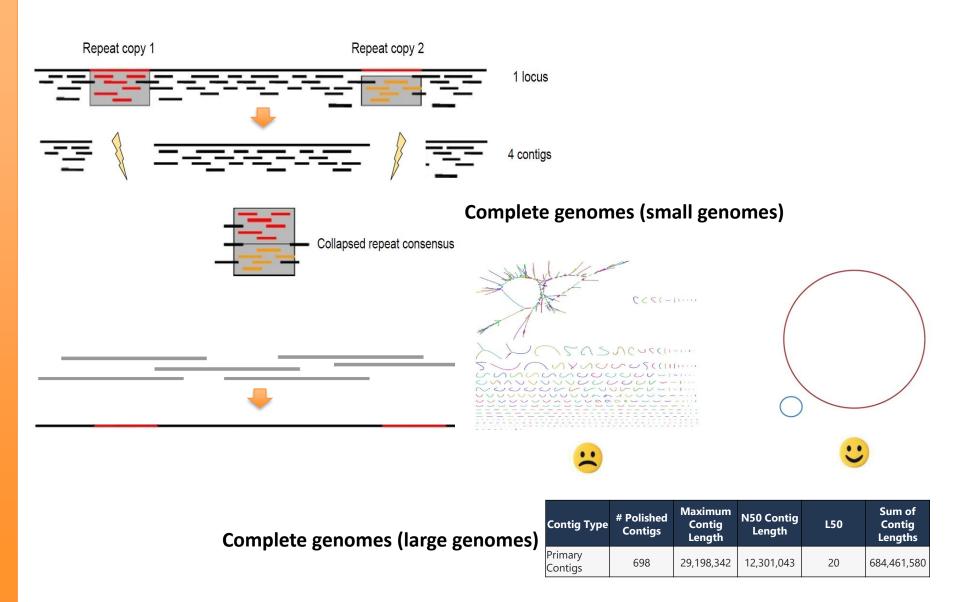




Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA

Throughput evolution at NSC

PacBio sequencing at NSC



Short read vs long read sequencing

Short read sequencing	Long read sequencing		
Amplification during sequencing	No amplification involved		
High read accuracy	High consensus read accuracy		
DNA requ	irements		
Works with almost any DNA sample	gDNA: pure HMW DNA needed		
Fragmented DNA	DNA fragments at least 40-50 kb long		
Low amount of DNA	High amount of DNA		
Low/Ultra-Low DNA input protocols			
Per base price			
Low	Medium/high		

Why long reads?

Long reads can span repeats

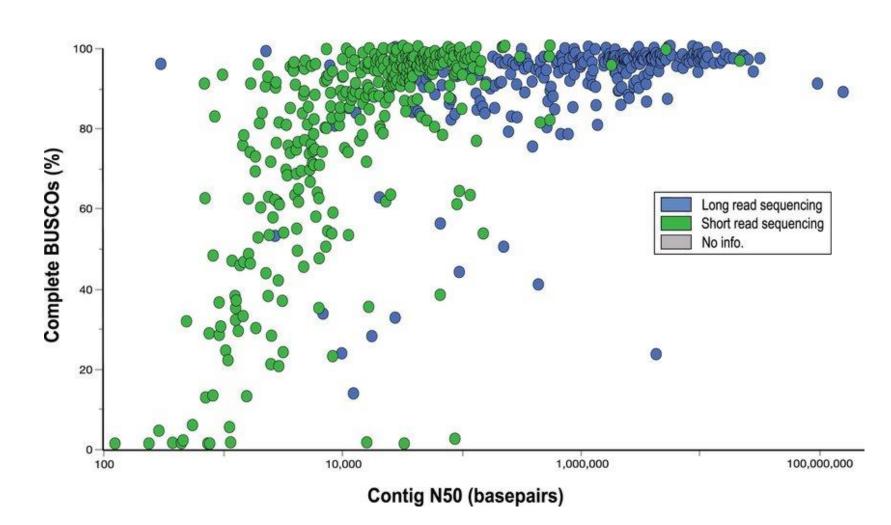
Draft vs reference quality genome

Type to search GoaT t Rangifer tarandu	axon index (e.g. Canidae) ——				Q
include descendants	include estimates	result columns	query builder	clear all	

taxon record 9870

Rangifer tarandus (species)			9870
gc_percent assembly_span assembly_level bioproduction 43.2 2.86G Scaffold PRJEBS median, n=2 primary, n=2 primary, n=2 primary, n=2		tig_n50 assembly_date 129k 2022-03-03 ary, n=2	scaffold_n50nohit986k60.2primary, n=2median, n=2
targetmitochondrion_assembly_spanmitochondrion_g98.216.4k36.2median, n=2median, n=1median, n=1	percent haploid_number chromosome_number 35 35 70 median_high, n=1 median_high, n=1 median_high, n=1	2 3.33	3G 🛿 3.41 📓 CANBP
other_prioritysequencing_statussequencing_statusCANBPpublishedpublishedlist, n=2enum, n=3enu	onomia sample_collected sample_acquired Image: Sample_collected Image: Sample_acquired Image: Sample_acquired Image: Sample_collected Image: Sample_acquired Im	list, n=1	ASM2245718v1 Organism name: <u>Rangifer tarandus (reindeer)</u> Isolate: DF-B-001
Lineage Eukaryota Opisthokonta Metazoa Eumetazoa Bilate Sarcopterygii Dipnotetrapodomorpha Tetrapoda Am		tebrata Gnathostomata	BioSample: SAMN07274499 BioProject: PRJNA438286 Submitter: Northwestern Polytechnical University
Cervidae Odocoileinae Rangifer			Date: 2022/03/03 Assembly level: Scaffold Genome representation: full
caribou - common name	Rangifer spitzbergensis - synonym		GenBank assembly accession: GCA_022457185.1 (latest) RefSeq assembly accession: n/a
			RefSeq assembly and GenBank assembly identical: n/a WGS Project: JAJJMQ01 Assembly method: SOAPdenovo v. 2
			Expected final version: yes Genome coverage: 200.0x Sequencing technology: Illumina

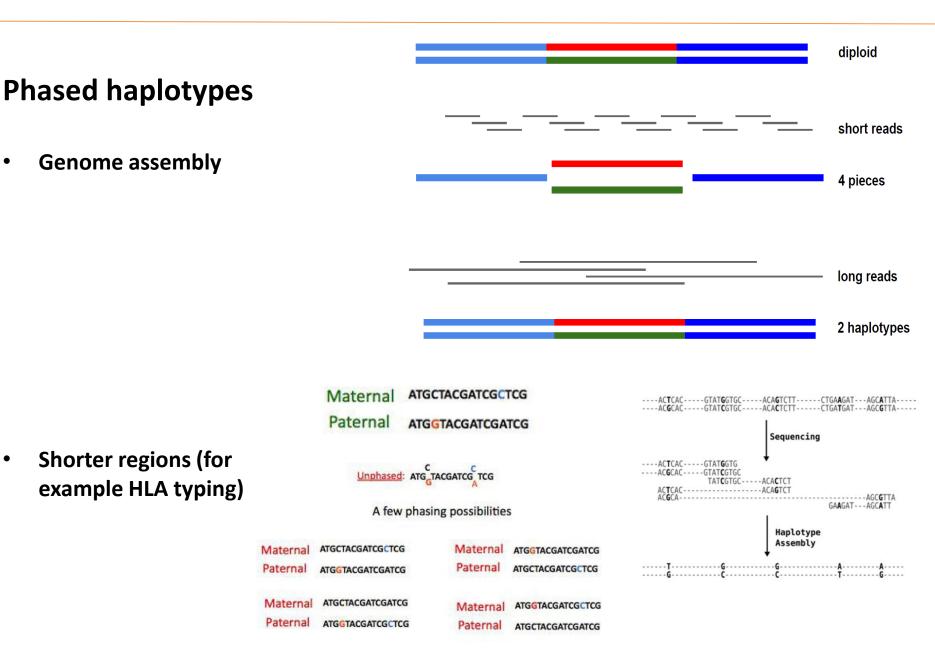
Draft vs reference quality genome II


EBP-Nor sequencing of reindeer from Svalbard:

- 30x PacBio HiFi reads
- 50x Arima Hi-C reads

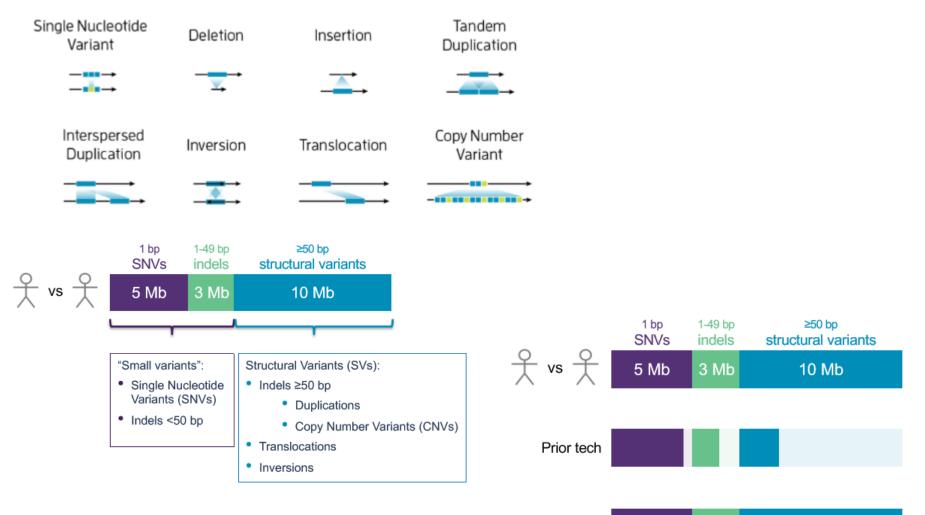
Assembly	Reinsdyr hap1 (incl X and Y chromosomes)	Reinsdyr hap2
# scaffolds	1395	1291
Total scaffold length:	2.97 Gb	2.82 Gb
Contig N50:	22.48 Mb	25.53 Mb
Scaffold N50:	69.83 Mb	64.92 Mb
Largest scaffold:	157.94 Mb	119.78 Mb
Scaffolds placed in chromosomes (%)	89.22%	82.25%
BUSCOs percentage complete	96.3%	94.1%
BUSCOs complete	8883	8686
BUSCOs single	8548	8381
BUSCOs duplicated	335	305
BUSCOs fragmented	89	81
BUSCOs missing	254	459
BUSCOs total	9226	9226

Relationship between assembly contiguity and the percentage of complete BUSCOs

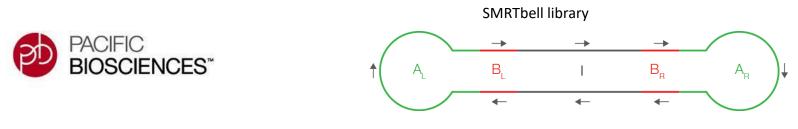


https://www.nature.com/articles/s41477-021-01031-8

Why long reads?


٠

•



Why long reads?

Structural variation – the missing heritability, not just SNVs

The PacBio sequencing technology

How SMRT Sequencing Works

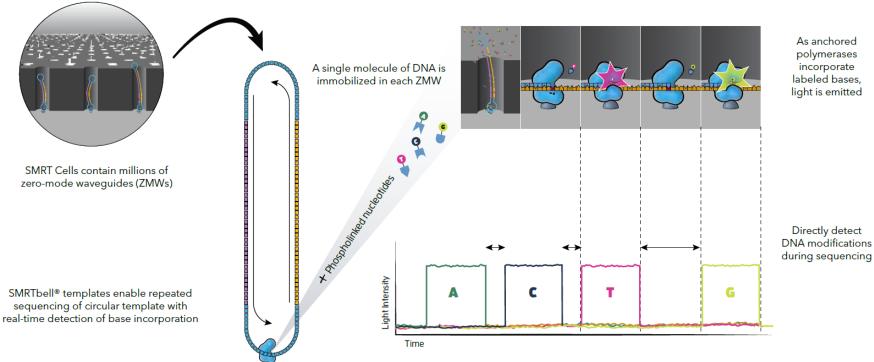
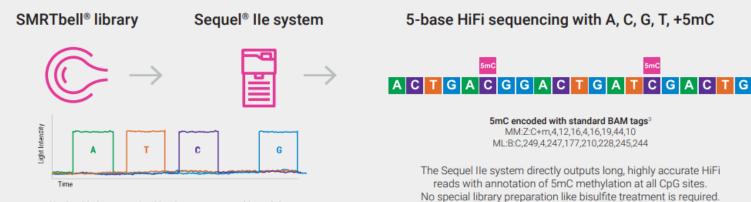
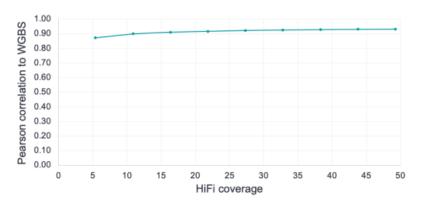



Image: Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA

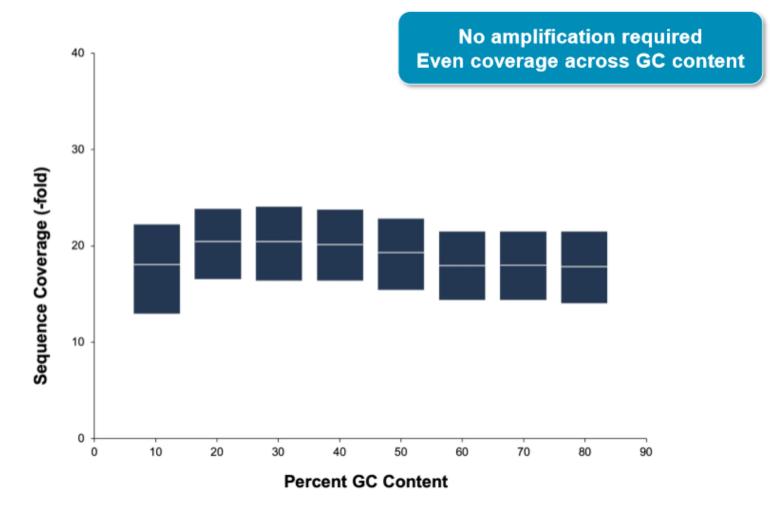

Nucleotide incorporation kinetics are measured in real time

Measuring DNA methylation

Nucleotide incorporation kinetics are measured in real time

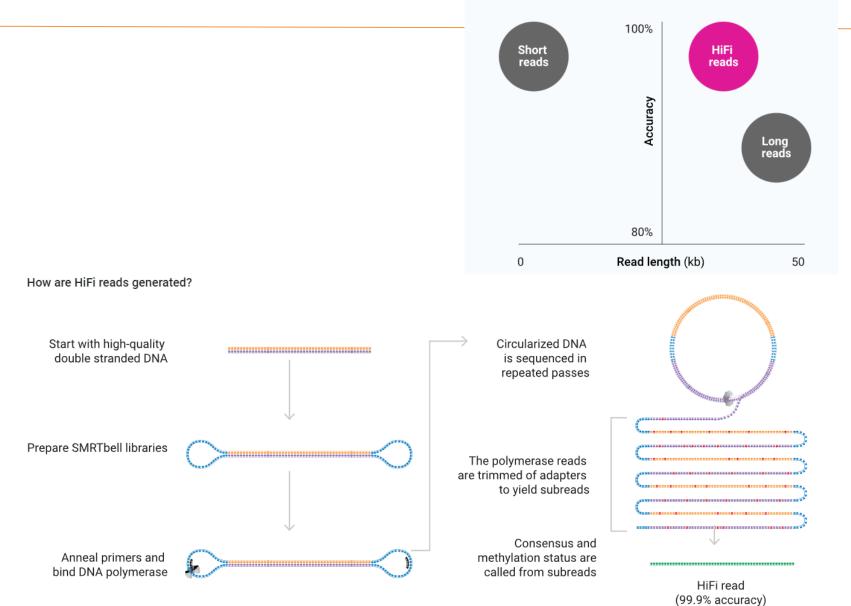
Coverage

Correlation of methylation calling in HiFi reads to whole-genome bisulfite sequencing (WGBS) of the human sample HG002. $^{\rm 4.5.6}$


Applicability

Methylation	Species	5-base HiFi sequencing		
5mC at CpG sites	Human and other vertebrates	\odot		
5mC at various motifs	Other eukaryotes, including plants	O Useful though partial vie		
4mC and 6mA	Microbes	Enabled through SMRT [®] Link microbial genome analysis		

PacBi


Sequence performance: uniformity

UNIFORM COVERAGE

Mean coverage per GC window across a human sample. Data generated with a 15 kb human HiFi library on a Sequel II System using 2.0 Chemistry and Sequel II System Software v8.0

HiFi sequencing:

Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA

HiFi read – long and accurate!

>m64089 191020 002935/346/ccs

CCOT GTCO ATAT TTAT TAAO

ATTA ACOC TTAA

ATT

CATA

TEGAACOTTCA

ACTTCCACTGT

TTAATCAAATC

GAACCATAACO

GAOGAAAOCAO

CATCATITIAT

GAAATAOTTAT

TTTTCAAAGAA

CCCCARTATOG

GAGTAGGTTAAJ

AAAAATGGCAA

CCACGAACCAC

ACCCARACTCH

TOGACTCCGGG

AATACOOCAAA

TTT TTTA AGT AGT TTA AGT TTA ATTA TTA CAT TTA ATTA CAT TTA CAT COT TTA TTA CAT CAT CAT CAT CAT ATTA ATTA AATA AATA AAAA AAAA AAAA

ATT

7880

CCG

OTCO

ATAT

TTAT

TAN

ATTA

ACO

TTAA

19,820 bp HiFi read, predicted QV: 33

TAGCCTATTAGAGTTTAATAAGATTAGTCTTGTGGTCGACAGTAATCCAAAAATACCAAAAATACAGTCCGCGTCCTAGGAATTTAGGAATTAATGTATTCAACATTAAAGGCGGATCACTACACGCCTCGA ATATTTTTATAACAATATTOTACCTOTAATGAACTTTTTGATAGGGCTTAAATTGGATTAATTGGTTTTTTTAAGGTTGGAGATTATGTGTTTCTAGCCAGTTCGTAATGTPOTCTAAAATAAAG CTACCTTGAOGTATTGATCCGOTAACTTGGATGGCATTAGATCTGGTOTATGTGATCATTCCTGTCTCAAAGTCTGTATTTGTATTTCAACGTAT TAATTTOGAATTATTTAGTAGTATTTOGAAG

TAGCCTATTAGAGTTTAATAAGATTAGTCTTGTGGTCGACAGTAATCCAAAAATACCAAAAATACAGTCCGCGTCCTAGGAATCTAGGAATTTAATGTATTCAACATTAAAGGCGGATCACTACACGCCTCGA

ATTAAAAJTTØTØTATTØACTAØTTCCACØCAGACCAATGØTAØCGATØTTTTTCTCATATCTØCØCATØCCTGATØAØTAACAAATCAGAØØCCAATATTTACTØTTATTATACØTTATGAATØØGAGC

TATATAAACTTATTTTAAAATTTTTATAAACAACOTAAAATTAAAATTCTAATACCCOTATTACTAACAAAATTTAACAGAAAAAACATGAGATCAAAATTTAAATTTACTTATATACC

TECTCARACATCTETTETGCARTATARATATATTTATCTATTTCAGAGEAGTTACCCCATAGAAAGGACGCCATAGGAAAGAATGGAGTATGCATAAGCATAGGATATGCTGAGAGAGCCTGTTTGAAAGGTTTG

>m64089 191020 002935/346/ccs

19,820 bp HiFi read, predicted QV: 33 19,812 bp correct, 8 errors 99.96% accurate (QV34)

AATACOOCAAA	
TTTTTAAOCCT	CATA DOTATTOCTOCKCAMATTATTTTCTOCCUCCAMATAATTAACTACCCCAATTAATTAACTACCCCAATTAATTAACTACCCCCAATTAATTAACTACCCCCC
TTTCAGACGAA	TIGAAGOTICATITTO SATTCACATEAAAAGOCOTICCACTEAAAAATAAAAOTACTACOTACHICCTACTOCATEAAATAAAOTACTATICCACTEAATAAATACAACTACCTAATAAAATACAACTACCTAATAA
DOTCAAACTAT	TOAMCATAAAAAGETTCCAATTCCAAATAACAACCTCTGCAAAATAAGGACACCTCGGAAATATGGGACCCCGGAAGTTTTTCCAATGGACACCAACGACCACTCGATTAACTAAC
AGTCOCTGAAA	ACTECENTOTIGETTIGAMAGETGITIGATCTOGOTOTICTCTTTATATAGOTATATAGAATATAGAAATATAGAAATATAGAAATATAGAAATATAGAAAACATTAAAAAGTTTTAAAAAAGTTTTAAAAAAGTTTTAAAAAA
AGTATCAAGTO	ATCCTTTCTATTCTACATCTCCGTATCTTCTAAAAATGAAAAGGAAATTGAATATTGAATATTGAATATGGATAAGGAGG
TOCTCAGCATT	TTAATCAAATCOCAA0000A00000000TTTTTAAAGTOTCOCTCCACTCACATCACTACCTCCCCTCAACACTACCTCCCCCTCAACACTACCTCCCCCTCAACACTACCTCCCCCC
TTAAOCTTACT	GALCATAGODAATOOCTUTACTTOCOTTACATTOCATTOCOTTACCOCAGATOTOCTCCOTATTACCCOCAGATOTOCTCCTATTCCTTATTCCTTTTCCTTTTCCACATAGOCOCCCCCTTTTACACOTAGOCOCCCCCCCCCC
ATTAACATCTC	GROUDANGCONTITINGUE CONTINUES
TACGACATOCC	CARCATTITATTGAATCCCTTAAAAACGATAAATCCCTTAAAAACTGAAAAATCCCCTAATAATTACTACGACTTGTCTAATGAATACACCCCAAATTACTACGACTAATGAATACCCCAAATTCCATGAAAAACCCCAAATTCCATGAATAAACAAAGTAAAAAACTGAAAAATCCCCAAAATTCCATGAAAAAAACCCAAAATTCCATGAATGA
TACTCOCTTTT	GANATIONTECO/GOVERTE
TTAGACCTATC	
CATGCOTAGCC	
TTTAAAATCTO	GROTROGITIANAAAANTTITUTTATGOTTIATGOTTITCAAAATTTCTTATGOTGAATAAAAAATCAATATGGATGAAATACACTATTGGATGCTACTATTTTTTTT
OCTTAACAGO	
COTTTGAATAT	
CTTTTTTATA	ACORAMCATGAGTADOGCOCCTOTTCACAATOTTTTCCACACCACGAGAAACAACGAGGTATCACAACGACCTCTTCTCGGAGAAACACGACCTCTTCTCTGGAGAAACACGACCCCCCCACGAAACCACGACCGAC
TATTTTAACAC	TOBACTCOSOBEACCCTCOMCARGEOSATAAACCTOCOMCTOCOCCATCAACAACCOCCTCOACAATCTOCOACAACCTTCCAACAACCACCTCCAACAACCACCCCCAACAA
ATTTACTTOGA	ANTACOGCARAGE/TUCATCTOG/TABARACAGC/TUCATCGO/TUCACCGA/TUCATCGO/TUCACCGA/TUCACCA/TUCACCGA/TUCACCGA/TUCACCA/TUCACCGA/TUCACCGA/TUCACCA/TUCACCA/TUCACCA/TUCACCA/TUCACCGA/TUCACCA/TUCACA/TUCACCA/TUCACA/TUCACCA/TUCACCA/TUCACA/TUCACCA/TUCACA/TUCACA
CATCOCCTATA	TTTTRAGCCRACTOROGOGOATMOATTCTAACOCATOTCCACTOCCAAACTATCAACTTOOGCTTCOOCCAAAACTAACTCCCCAAACTAACTCCCCAAACTAAACCCCCC
TTOTATTOTA	TTCARAGGMCATUAACCTTTGAOGAAGGAATUAACCTTGAOGCCCAAAGGCCTAAGGACCCTAAGGACCCCAAAGGCCTTATGACTTGATTGCCTGTGCCCCCAAAGGCCCCAAAGGCCCTAAGGACCCCCAAAGGCCCCCAAAGGCCCCCGCGCCCCCCC
CTTTCTTOT	GUTCAMACTATEADTCCAAAAGTAAATTTTGAACGCCAGAACACGCCCGCGACGACGACGACGACGACGA
TATTTCTGTTT	Arroscranhardocoulogitartradealartrad
GTGTGCCAAGC	
TTTTGATGATO	
CCCCGCGCTCA	
ATTTGATCTTCI	AT DRAFT DRUGGESCONTINUES CONTINUES
DGAATTAAATCI	
TAAOCTOCTTA	
TCTTTATCCTC	
ATAAAAATGAC	THANATOTIC/CONTRACTATAN/CONTRAC
MOCAROCANTI	
ACAAATTTACCE	
AAAAAAAAAATTTACG	COTTOANTALCOTTOACACCOTTOACCACCOTTOACACCOTTOACCACCOTTOACACCOTTOACCACCACCACCOTTOACCACCOTTOACCACCACCACCACCACCACCACCACCACCACCACCACC
AGACAAOCTT	TTTTTTTATATTOCANGACATTCTTATTOTANANOUTTOTTCTTTANANOUTTOTTCTTTOCANCCATCANTOCCOCCATCANTOCCOACCOTTOTTACACOUNCIDENCE ATTOTATATACACACTANANANOUTTOTTCTTTATATOCAACOUNCIDENCE ATTOTATACACTACAACOUNCIDENCE ATTOTATACACTACAACOUNCIDENCE ATTOTATACACACTANANANACCAACOUNCIDENCE ATTOTATACAACOUNCIDENCE ATTOTATACAACOUNCI
TTTTCCACTAA	
ATAAAGCCTTI	
ATTTTACTANA	
	CTTTTTTTTTGTTTAGAGAATAKAATAAAAAAAAAAAAAA
	GTOTOCCAAGCAAACGAAATCTATATTGGGCCCAGCCCTGGCTAATTGTTACTACGAGGGAAATTTTCTACAGGGAGAAGTTATGGGCCAGCCTGGGGAGGATGGCGTGGGAGGATGGCGTGGAGGATGGCGTGGAGGATGGCGTGGGAGGATGGCGTGGGAGGATGGCGTGGGAGGATGGCGTGGGAGGATGGCGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG
	TTTORIGATOTTOTAAAAAAAAAAACGACTATOCATGACCACTOCCOACCGACCTATOCACTATICATTTATTTATTTATTTATTTTATTT
	CCCCCCCCCTCAAAGCCCTATCCAACCCCCCCTCCCCCCCC
	ATTGATCTC00TGATTTATCTCTAMACTTATGGTATGATATTATGGGCCCCGGGGGGAAAATTATATATA
	GGARTEAAATCOCGARCTETTTTTATTCATTTTTTTTTTTTTTTTTTTTTTTTT
	TARGETGETTATTTAGGETACTTGATAGGTGAAAAAAATTATGATACTTGATAGGTGAAAAAAAA
	TCTTTRTCCTCTACTTAA07A07A0CCA0CAACTTTAA00ACCA0CAACTATAA00ACTTATAATTAATTAATTAATTAATTAATTAATTAATTAATTAATTAATTAATTAA
	ATAMMATGACTTTTATTATCAACGAACATTCTAATCAAAACCAACATTCTAATATAACAAAACCAACATTTATATTACATTTACATTTACATTTACATTTAACAAAAACCAACATTTAATATTACATTAACAAAAACCAAAATTTAACAAAAACCAAAATTTAACAAAAACCAAAAATTAACTTTAATATTTACATTTAACAAAAAA
	GAGGGGTCARGATTITTGTARTCTAACAATGTARGTTTGTAATTGTAAATGGGAAAGGTAATGCGGAAAGGTAACGCCTGCCGCTCCCCCCCC
	ACAANTTRODOCACTATGAACTITTCTRODOGOTAAAATTTTCACGGGATGAAAGTTTGATAAAATCATTGAGGGTACGATTTAAAAATCATTGAGGGTACAATTTTAAAAATCATTGAGGGTACAATTTTAAAAATCATTGAGGGTACAATTTTAAAAATCATTGAGGGTACAATTTTAAAAATCATTGAGGATGAAAGTAGTTTGATAATCATCGGCGACGAAAAGCTACTTTGATAATCATGGGGGCAAAAGCTACTTTGATAATCATGGGGGCAAAAGCTACTTTGATAATCATGGGGGCAAAAGCTACTTTGATAATCATGGGGGCAAAAGCTACTTTGATAATCATGGGGGCAAAAGCTACTTTGATAATCATGGGGGCAAAAGCTACTTTGATAATCATGGGGGCAAAAGCTACTTTGATAATCATGGGGGCAAAAGCTACTTTGATAATCATGGGGGCAACAATTTGATAGGGGGCAACAATGGGGGCAACAATTTGATGGGGGCAACAATGGGGGCAACAAGCTACTTGATGGGGGGCAAAAGCTACTTGATGGGGGGCAACAATGGGGGGCAAAAGCTACTTGGGGGGCAAAAGCTACTGGGGGCAACAAGCTACTGGGGGCAACAAGCTACTGGGGGGCAACAAGCTACTGGGGGGCAACAAGCTACTGGGGGGCAAAAGCTACTGGGGGGCAACAAGCTACTGGGGGGGAGGAAGGTACGGGGGGCAACAAGCTACTGGGGGGGAGGAGGAGGTACGGGGGGAGGAGGGAG
	ARGAGETTINGCARTATOFOTOTOACAOSCTTGATAAAAATTATTCATCOTTTTTATOFTAATCGAATTACOTTTATCCCACTGGGGGGGCAGTTACCOTTTACCCACTGGCGGGGCAGTTATCCGACACGGCAATTAGCGTTACCOTTTATCCCACTGGGGGTCACCACGGCAGTTATCCGACGGGGCTATCCGGGGCTACCGGCGTCACCACGGCAGTTACCGTTCACGACGCCACGGCGCGCGC
	TTTCC/CCTANATTOTA/GT/AAAATTOTA/CCAACATAACCAAAACCCAAAAACCAAAAACCAAAAATTOTA/CCAACATAAACAACCAAAAAATTOTA/CCAACATAAAAATOTA/AAAATO
	ARTANAGCCTTAATATYOTOTTTAAGACTACTAACGACGCCOTTOGCOATATTTAGTACATYGATCCCAATAAAGAGCTATAGCTGCTATGGACCCAATAGTGTTTGACACCAAGAGCTAATAAAAGGCCGAATAGTGTTTGACACCAATAGAAGCCGAATAGTGTTTGACACCAATAGAAGCCGAATAGTGTTCTTGGACACTAAGGACGCGAATAGTGTTCTTGGACACTAAGGACGCGAATAGTGTTCTTGGACACTAAGGACGCGAATAGTGTTCTTGGACACTAAGGACGCGAATAGTGTTCTTGGACACTAAGGACGCGAATAGTGTTCTTGGACACTAAGGACGCGAATAGTGTTCTGGACACTAAGGACGCGAATAGTGTTCGACACTAGTGACGCGAATAGTGTTCGACACTAAGGACGCGAATAGTGTTCGACACTAGTGACGCGAATAGTGTTCGACACTAGGACGCGAATAGTGTTCGACACTAGGACGCGAATAGTGTTGGACACTAGGACGCGAATAGTGTTCGACACTAGGACGCGAATAGTGTTGGACACTAGGACGCGAATAGTGTTGGACACTAGGACGCGAATAGTGTGGACGCGAATAGTGGACGCGAATAGTGGACGCGAATAGTGGACGCGAATAGTGGACGCGAATAGTGGACGCGAATAGGACGCGAATAGGACGCGAATAGGACGCGAATAGGACGCGAATAGGACGCGAATAGGACGCGAATAGGACGCGAATAGGACGCGAATAGGACGCGAATAGGACGCGAATAGGACGCGAATAGGACGGAATAGGACGCGAATAGGACGCGAATAGGACGCGAATAGGACGGAATAGGACGCGAATAGGACGCGAATAGGACGCGAATAGGACGCGAATAGGACGCGAATAGGACGCGAATAGGACGCGAATAGGACGCGAATAGGACGGAATAGGACG
	ATTTACTAMANOTICITCATORIGANTATIOCCCATTICITITGANTCAMAANTTAATACCCCAGTTTCCCCGATCACCCCTATATICCCCGATCACCCCTATATICCCCGATCACCCCCATTACCATAGACTAAAAATCATTAATACTACCCCCATTACCAATAACATACTTTAAACCCCCC

TATAMACTOUTATTACTAGAGAATATTACTAGAGAATATAGAGATTATATAGGGATTATAATAGGATTATATAGGATTATATAGGATTAAAATATGATTATATAGAGATTAAAATATGATTATATAGAGATTAAAATATGATTATATAGAGATTAAAATATGATTATATAGAGATTAAAATATGATTATATAGAGATTAAAATATGATTATATAGAGATTAAAATATGATTATATAGAGATTAAAATATGATTATATAGAGATTAAAATATGATTAATAGAGATTAAAATATGATTAATAGAGATTAAAATATGATTAGAGATTAAAATATGATTAGAGATTAAAATATGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGAGATTAGA TORACETAGES CONTRACTOR OF THE CONTRACTOR OF THE

ACTORACTOCICCOTOCICACOUNTICTACCOCCUTACTACATOR ACCOUNTICATION ACCOU

DOCTOR AND THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OWNE

Read accuracy comparison between different sequencing platforms:

PacBio HiFi Reads are Transforming Genomics

Q33 = 99.95%PacBio HiFi Illumina NovaSeg 031 = 99.929**ONT Bonito** # Reads (a.u.) Q18 = 98.3%>100 kb reads 92 94 96 98 100 90 **HIFI READ** 99.9% accuracy Read accuracy (%) PacBio HiFi: HG003 18 kb library, Sequel II System Chemistry 2.0, precisionFDA Truth Challenge V2 Illumina: HG002 2×150 bp NovaSeq library, precisionFDA Truth Challenge V2 ONT: Bonito NCM Nanopore Tech Update Dec. 2020 and Bonito Basecalling with R9.4.1

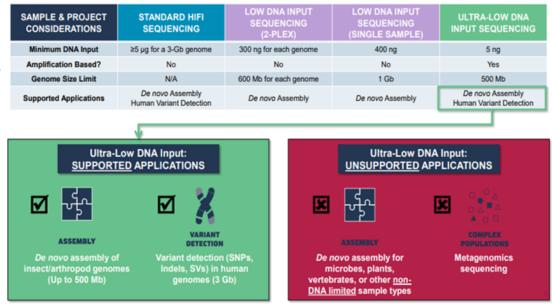
PACBIO

Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA

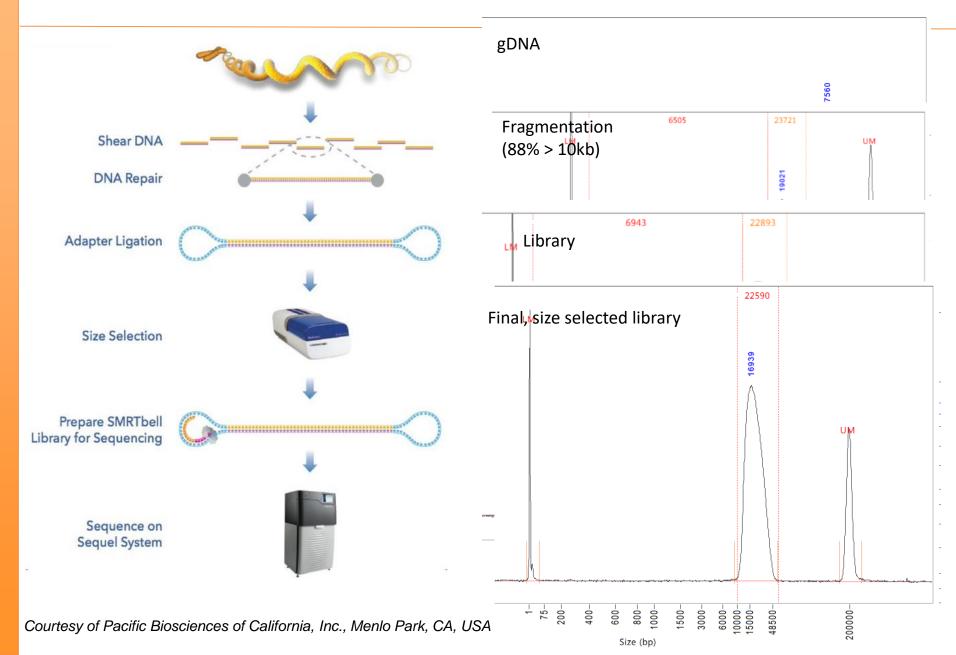
14

Sequel II/IIe applications

SEQUEL II SYSTEM KEY APPLICATIONS

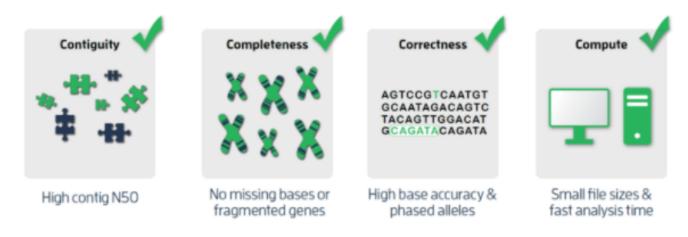


Whole Genome Sequencing for De novo Assembly


 Single Molecule, Real-Time (SMRT) Sequencing on the Sequel II System enables easy and affordable generation of high-quality de novo assemblies. With megabase size contig N50s, accuracies >99.99%, and phased haplotypes, you can do more biology – capturing undetected SNVs, fully intact genes, and regulatory elements embedded in complex regions.

With one 8M SMRT cell you can:

- Produce reference quality assemblies for genomes around 1 Gb – HiFi reads (10- to 15-fold HiFi read coverage per haplotype)
- Produce reference quality assemblies for genomes up to 500 Mb – Ultra-Low DNA input (5-20 ng DNA)
- Sequence up to 96 microbes


Library prep for reference quality assemblies

Whole genome sequencing

BUILDING BETTER GENOMES. ENABLING BREAKTHROUGH DISCOVERY.

PacBio HiFi reads provide both long read lengths (up to 25 kb) and high accuracy (>99.9%) to quickly and affordably generate contiguous, complete, and correct *de novo* genome assemblies of even the most complex genomes.

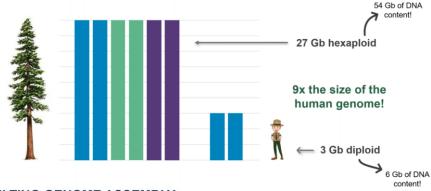
What about hybrid approaches?

KHIFi reads + short reads: no benefit for contig building or polishing

XHiFi reads + long reads: may have marginal benefit to contiguity, but no readily available tools

HiFi + scaffolding: technologies like optical maps and HiC help assign your high-quality HiFi genome assemblies into chromosomes

HiFi assembly of large genomes - redwood


THE CALIFORNIA (COASTAL) REDWOOD GENOME

Sequoia sempervirens

- One of the world's fastestgrowing conifers
- Live for thousands of years
- Only 5% of the original oldgrowth coast redwood forest remains
- 27 Gb hexaploid genome
- Genome assemblies by ONT in 2019 and PacBio in 2020

THE REDWOOD GENOME IS LARGE AND COMPLEX

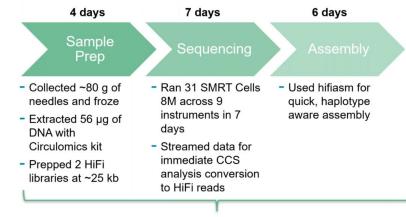
RESULTING GENOME ASSEMBLY

- Standard running parameters - no iteration

- Run on 64 cores with 512 Gb of RAM - no specialized or particularly large compute cluster

California Red	wood Genome Assembly	y Results		
Methodology	PacBio HiFi reads	ONT + short reads ¹		
Genome Coverage	22-fold	23-fold + 122-fold		
Assembly Size (Gb)	47.7	26.5	USCO does not	
Contig N50 (Mb)	1.92	0.11		
BUSCO Complete	59%	56%	vork well in	
Mapped transcripts with frameshift errors ²	0.12%	4 070/	conifers due to very long introns	

PacBio HiFi reads¹


- 64 cores with 512 Gb of RAM
- ~46,000 CPU hours for HiFi generation ("error correction")
- 6 days wall time, ~7,200 CPU hours for assembly

6 days vs 5-6 months of wall time for just genome assembly

ONT + short reads²

THE PROJECT WORKFLOW

17 DAYS

Courtesy of Pacific Biosciences of California, Inc.

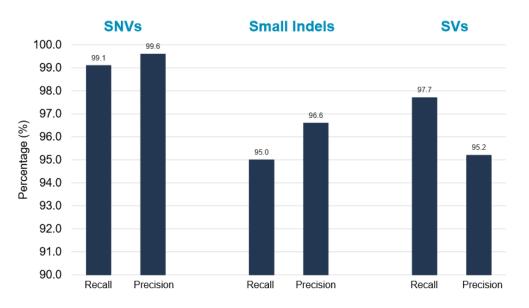
Sequencing and assembling mega-genomes of mega-trees: the giant sequeia and coast redwood genomes Using transcript set of Ables alba from <u>Neale, D, et al</u>, consisting of 22,561 transcript sequences

HiFi sequencing data available

NEW HIFI DATASETS – "TRY BEFORE YOU BUY"

Procedure & Checklist - Preparing HiFi SMRTbell[®] Libraries from Ultra-Low DNA Input

Required gDNA Input Amount	Required Quality of Input gDNA	gDNA Shearing Method	Target Sheared Fragment Size Distribution Mode	Target Size	Total Mass of Pooled PCR Product Required for Library Construction	Required SMRTbell Library Input for BluePippin Size- Selection
5-20 ng	Majority of gDNA >20 kb	Megaruptor or g-TUBE	10 kb sheared DNA is optimal	8-10 kb	≥500 ng	≥400ng


Sequel II/IIe applications

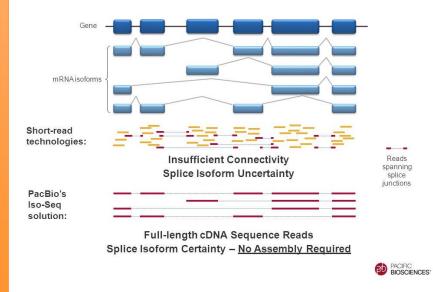
SEQUEL II SYSTEM KEY APPLICATIONS

Variant Detection Using Whole Genome Sequencing with HiFi Reads

 With highly accurate long reads (HiFi reads) from the Sequel II System, powered by SMRT Sequencing technology, you can comprehensively detect variants in a human genome. HiFi reads provide high precision and recall for single nucleotide variants (SNVs), indels, structural variants (SVs), and copy number variants (CNVs), including in difficult-to-map repetitive regions.

EXAMPLE: VARIANT CALLING WITH HIFI READS

- With two 8M SMRT Cells you can call SNVs, InDels, and SVs in a 3 Gb genome
- ≥15-fold HiFi read coverage of a human genome


Variant calls from ~15-fold HiFi read coverage of a human genome (HG002) were measured against the Genome in a Bottle small variant benchmark (v3.3.2) for SNVs and indels using Deep Variant and SMRT Link 8.0 for SVs. Libraries were generated using a 15 kb insert and sequenced using Chemistry 2.0.

Sequel II/IIe applications

SEQUEL II SYSTEM KEY APPLICATIONS

Long-Read RNA Sequencing (Iso-Seq Analysis)

 With SMRT Sequencing and the Sequel II System, you can easily and affordably sequence complete transcript isoforms in genes of interest or across the entire transcriptome. The Iso-Seq method allows users to generate full-length cDNA sequences up to 10 kb in length – with no assembly required – to confidently characterize full-length transcript isoforms.

Output: 2-4 M full length reads

- One human transcriptome per 8M SMRT Cell
- Multiplex up to 12 samples
- Single-Cell Iso-Seq:
 - 1000 unique reads/ single cell for 3000 cells
 - 10 000 unique reads/ single cell for 300 cells

Procedure & Checklist – Preparing Single-Cell Iso-Seq[™] Libraries Using SMRTbell[®] Express Template Prep Kit 2.0

Intact (un-sheared) RT-PCR products initially generated using a third-party single-cell preparation system used as input.

- Although PacBio does not have a specific single-cell partner or system recommendation, in principle, practically any single-cell platform should be compatible with single-cell Iso-Seq library preparation so long as that platform generates cDNA.
 - For the Iso-Seq method to achieve full-length cDNAs, it is recommended to use a template-switching oligo (TSO). This is a common technique and is currently used in single-cell platforms and PacBio's current bulk Iso-Seq methods.
- For optimal analytical results, PacBio recommends combining matching short-read and Iso-Seq datasets (generated for the same exact single-cell library sample).
 - We recommend that the post-reamplification cDNA yield allow for parallel processing of both short-read sequencing and SMRT Sequencing.
 - The Sequel System requires >80 ng of cDNA, while the Sequel II System requires >160 ng cDNA. These are target DNA amounts for the PCR re-amplification steps for the Iso-Seq library construction workflow (see Page 4 of the procedure).

Sequel II/IIe applications

SEQUEL II SYSTEM KEY APPLICATIONS

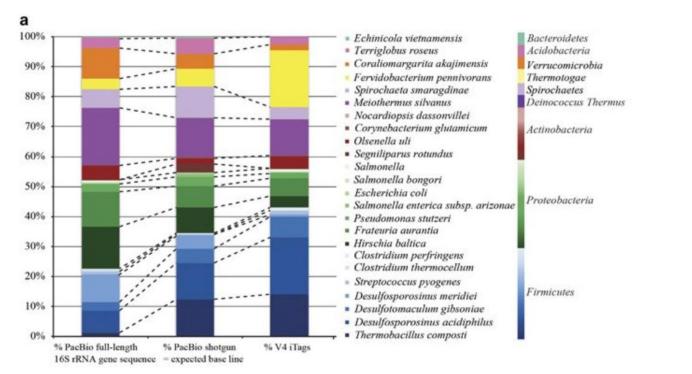
Metagenomic Sequencing of Complex Populations

 The ability to identify and understand the functions of the complex microbial populations living in, on, and around us requires comprehensive characterization of each community member. Highly accurate long reads – HiFi reads – with singlemolecule resolution make SMRT Sequencing and the Sequel II System ideal for fulllength 16S rRNA sequencing, long-read metagenomic profiling, and shotgun metagenomic assembly

With one 8M SMRT cell you can:

- Characterize up to 96 samples using full-length 16S rRNA with strain level resolution (8000 reads per sample)
- Generate near-complete assemblies of high-complexity sample(s) (e.g. gut microbiome) up to 4 communities per 8M SMRT cell

Metagenomics: 16S rRNA


OPEN

The ISME Journal (2016) 10, 2020–2032 © 2016 International Society for Microbial Ecology All rights reserved 1751-7362/16 www.nature.com/ismei

ORIGINAL ARTICLE High-resolution phylogenetic microbial community profiling

Esther Singer¹, Brian Bushnell¹, Devin Coleman-Derr^{1,2}, Brett Bowman³, Robert M Bowers¹, Asaf Levy¹, Esther A Gies⁴, Jan-Fang Cheng¹, Alex Copeland¹, Hans-Peter Klenk⁵, Steven J Hallam⁴, Philip Hugenholtz⁶, Susannah G Tringe¹ and Tanja Woyke¹ ¹US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA; ²USD-ARS, Albany, CA, USA; ³Pacific Biosciences, Menlo Park, CA, USA; ⁴University of British Columbia, Vancouver, BC, Canada; ⁸Newcastle University, School of Biology, Newcastle upon Tyne, UK and ⁶Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia

- Study of mock community made up of 23 bacterial and 3 archaeal species and microbial community in Sakinaw Lake.
- Conclusion: Comparison with V4 iTag, using PacBio sequencing enables more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential.

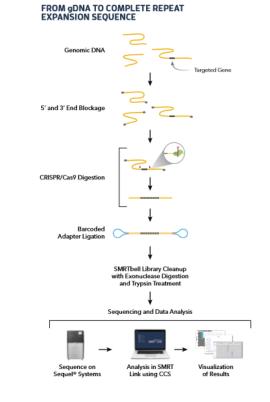
Sequel II/IIe applications – targeted sequencing

Application	Application Targeted Sequencing		
	Amplicon Sequencing	No-Amp Targeted Sequencing	
With 1 SMRT Cell 8M you can:	Sequence 384 barcoded amplicons	Sequence 5 targeted regions in a multiplex of 10 samples	
Minimum Recommended Coverage	30-fold ≥Q20 CCS read coverage for variant detection 6,000-fold ≥Q20 CCS read coverage for minor variant detection (1% sensitivity)	≥100-fold ≥Q20 CCS read coverage per targe locus	
Library Insert Size	500 bp - 15 kb	4-6 kb or larger	
Minimum Input Amount	250-500 ng for 250-1000 bp 500-1000ng for 1-3 kb bp 1000-2000 ng for 3-10 kb 1500- 3000 ng for 15kb	5 to 10 μg (represented by either a single sample or the total of multiple samples that will be multiplexed)	
Multiplexing/SMRT Cell	Up to 1,000+ samples/ SMRT Cell 8M or SMRT Cell 1M	Up to 10 samples/SMR Cell	
	CCS	CCS	

-

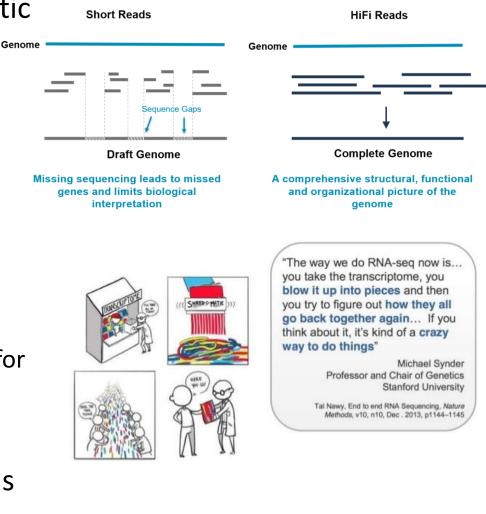
300 KE

50 MB

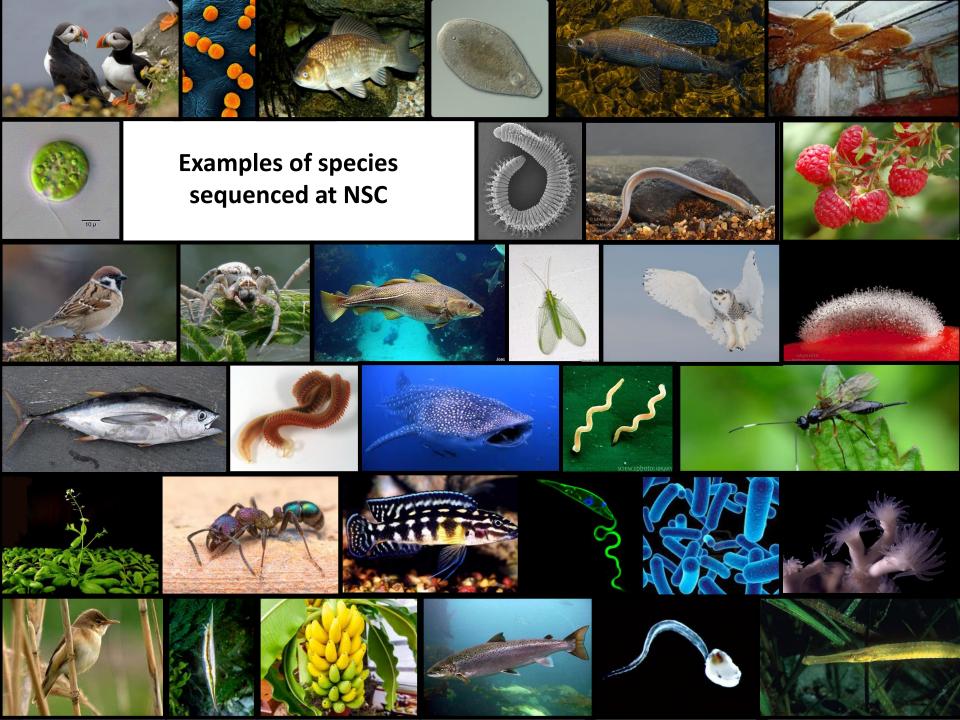

PCR 50 KB

When targeting >50 kb genomic regions – use probe-based capture using DNA oligo hybridization. Protocols available for:

- IDT xGen Lockdown probes
 - Nimbelgen SeqCap EZ


No-amplification targeted sequencing using CRISPR/Cas9 system:

- Challenging regions for PCR amplification (repeat expansions, low complexity regions)
- No PCR bias
- Preserves epigenetic modification signals



PacBio applications at NSC

- *de novo* sequencing of prokaryotic and eukaryotic organisms – Genom
 - Multiplexing up to 96 bacterial samples
 - Mostly HiFi library prep and sequencing for large genomes
- Sequencing of full-length transcriptomes – IsoSeq
 - Multiplexing up to 12 samples for genome annotation
- Targeted sequencing amplicons and sequence capture

post@sequencing.uio.no https://www.sequencing.uio.no/

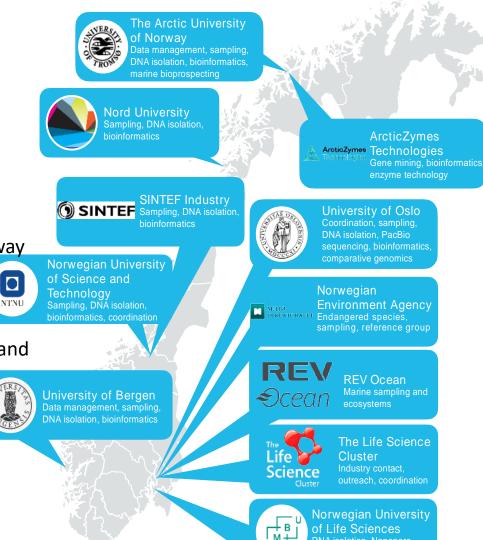
Largest ongoing project: EBP-Nor

EARTH BIOGENOME PROJECT

NORWAY

EBP-Nor

The Norwegian EBP initiative (EBP-Nor)


Planned in 3 phases

Phase 1 2021-2024 (30 million NOK)

- Funded by the Research Council of Norway
- Planned 150 species
- Norwegian and arctic species
- Marine species (sampling competence)
- Coordination with the Nordic countries and ERGA (and EBP, VGP, DToL etc..)
- Several genomes underway (HiFI, HiC)

Preparation for 2 phase has begun

Norwegian University of Life Sciences sequencing, bioinformatics

The first EBP-Nor genomes are finished

In progress: insects (bumble bee, lacewing), Atlantic puffin, cod and salmon (improved), bird cherry (*Prunus padus*), cloudberry ++

Conference in 2023: Norwegian Biodiversity & Genomics

Feb. 8, 2023 12:00 PM–Feb. 10, 2023 1:00 PM, Gamle festsal https://www.ebpnor.org/

cees-drift@sequencing.uio.no NSC team at CEES: Ave Tooming-Klunderud Morten Skage Spyros Kollias