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Disclaimer

| am a machine learning researcher, not a biologist:
you are the experts there!



Learning aims

A Key points should be the intuition and high-level understanding of what
machine learning is, types of problems it can help solving

A Machine learning is not a black box: every choice we make has a meaning

A Overall understanding that there is a data representation component and a
machine learning algorithm

A High-level understanding of machine learning workflow, comparison and
uncertainty related to it



Sequencing technologies provide data which can be

examined for biological properties

CDR3 V gene
CAAAERNTGELFF TRBV28*01
CAAGVENTGELFF TRBV5-6*01
CAAQATNTGELFF TRBV19*01
CAAQDSNTGELFF TRBV5-1*01
CAAQMTNTGELFF TRBV19*01
CAAQNLNTGELFF TRBV15*01
CAARDQRDLNTGELFF  TRBV2*01
CAASDPNTGELFF TRBV12-3*01
CAASEMNTGELFF TRBV7-8*01
CACQELNTGELFF TRBV30*01
CAEGELNTGELFF TRBV7-2*01
CAGADSNTGELFF TRBV7-8*01
CAGDYLNTGELFF TRBV7-8*01
CAGGDPNTGELFF TRBV7-9*01
CAGGDSNTGELFF TRBV7-8*01
CAGGRGNTGELFF TRBV12-3*01

CAGGVNPNTGELFF TRBV5-1"01

CAGQDLNTGELFF TRBV7-2"01
CAGQNLNTGELFF TRBV19*01
CAGQRANTGELFF TRBV19*01
CAIADANTGELFF TRBV5-1*01
CAIGDENTGELFF TRBV7-8*01
CAIGDRNTGELFF TRBV5-5"01
CAIGDRSSGEQYF TRBV5-4"01
CAIQDLNTGELFF TRBV13*01
CAIQESNTGELFF TRBV10-3*01
CAIQYANTGELFF TRBV15*01

CAIRTSGMLNTGELFF ~ TRBV2*01

J gene

TRBJ2-2*01
TRBJ2-2*01
TRBJ2-2*01
TRBJ2-2°01
TRBJ2-2*01
TRBJ2-2*01
TRBJ2-2*01
TRBJ2-2"01
TRBJ2-2*01
TRBJ2-2*01
TRBJ2-2*01
TRBJ2-2*01
TRBJ2-2*01
TRBJ2-2*01
TRBJ2-2*01
TRBJ2-2*01
TRBJ2-2*01
TRBJ2-2*01
TRBJ2-2"01
TRBJ2-2*01
TRBJ2-2*01
TRBJ2-2*01
TRBJ2-2*01
TRBJ2-7*01
TRBJ2-2*01
TRBJ2-2*01
TRBJ2-2*01
TRBJ2-2*01

Species

HomoSapiens
HomoSapiens
HomoSapiens
HomoSapiens
HomoSapiens
HomoSapiens
HomoSapiens
HomoSapiens
HomoSapiens
HomoSapiens
HomoSapiens
HomoSapiens
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HomoSapiens
HomoSapiens
HomoSapiens
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HomoSapiens
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HomoSapiens

HomoSapiens

Motifs and data from VDJdb (Bagaev et al. 2020)
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Sequencing technologies provide data which can be
examined for biological properties

A One way to approach an
analysis: make a position =P
weight matrix showing
product multinomial
distribution of amino acids

Q Butwhatifwewantte  __ED 1 o A =
predict if a sequence is
specific to a virus or not?

é €Ii ; é 9 10 |I| (‘2

Motifs and data from VDJdb (Bagaev et al. 2020)



Machine learning is a powerful approach to
discovering patterns in (biological) data

d A set of methods that
allow for making Sy
inferences about the data | gaS=Teerr -

CAAQATNTGELFF
CAAQDSNTGELFF .

Q Example: will the ShesimE:
; . CASSASYYEQYF
receptor bind to the virus | -
or not? - we can fit a raw labeled data

logistic regression model
on receptor data and
then predict binding for
new receptors
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ML and computational biology development timeline

1986 Backpropagation algorithm

Rumelhart et al. show how to correctly
train multi-layer neural networks.

1975 Sanger sequencing
invented

1977 First DNA genome

1957 Perceptron invented
sequenced (viral)

Precursor to neural networks.
1958 First X-ray
crystallography of protein

1963 Ultrasound
commercially available

1977 Protein Data Bank
(PDB) launched

1980 MRI image
first used in clinic

1960
1953 1969 “Al Winter” begins 1982 Perceptron
DNA Minsky & Papert prove
structure that single-layer Stormo trains
discovered perceptrons cannot learn perceptron to detect

translation initiation
sites of E. coli.

many simple functions.
Neural network research
falls out of favor.
1982 Genbank
database launched

to predict protein contact maps

2001 Random forest

1988 More “Al Winter’
Pinker & Prince argue that
neural networks will fail to
model natural language.

1989 Convolutional neural
networks invented

LeCun proposes a layer for
spatial data, trainable by
backpropagation.

1987 Sanger

used for gene-finding sequencing

commercialized

1997 Long short-

term memory (LSTM)

networks invente

1995 Wake-sleep for

deep autoencoders

1995 Support vector
machine (SVM) inve

1995 Microarray first

used for genotyping

1999 Recurrent networks used

invented

2001 Human genome
sequenced

2001 Fast matrix multiply
on commercial GPUs

Develops into an enabling
technology for deep learning.

2008 1000 Genomes
project launches

d

2007 ChlIP-seq invented

A wave of large datasets and
related methods ensues.

2005 First genome-wide
association study (GWAS)

2003 ENCODE project launched

nted

2012 CRISPR-Cas9 gene
editing technology invented

2012 Deep learning wins Merck
Molecular Activity Challenge

2012 Deep learning wins
ImageNet challenge

2014 Generative adversarial
networks (GANS) invented

2014 Deep learning
improves splice prediction

2017 Deep learning improves
short-read DNA variant calling

2018 Deep learning improves
in-hospital mortality prediction
from electronic health records

2018 Deep learning
improves template-free
protein structure prediction

2018 Deep learning beats
dermatologists at detecting
skin cancer

2016 Deep learning improves
high-content microscopy screening

2016 Deep learning improves
diabetic retinopathy screening
2016 Deep learning improves base calling
in commercial nanopore sequencers
2015 Human genome sequencing for $1000
2015 Deep learning improves protein binding prediction

2015 Deep learning boosts power of Alzheimer’s
clinical trial by improved patient enroliment

Wainberg et al. 2018



A variety of research questions in computational
biology can be tackled with machine learning

Transcription factor binding prediction:

Transcription factors are proteins which
bind to certain sites in DNA and regulate
transcription of genes

Given a set of DNA sequences for which
we know if they will bind or not, how can we
predict if a transcription factor will bind to a
new DNA sequence?

Classification problem!

measuring specificity with sequencing

bind genome ,»~, mapreads gz, training
fragments to genome sequences

"peak 1" o .
m ggagataca peak 2 1 cggagataca
agataca agataggtaa
cggagatac agataggtaa 2 agataggtaa
\\\—_‘_’////// cggagatac aagatagg . \
N@ g cggagata aagatagg :

__binding
tcggagatacaggattaagataggtaaat >

7 sites?

Leung et al. 2016

Published: 27 July 2015

Predicting the sequence specificities of DNA- and
RNA-binding proteins by deep learning

Babak Alipanahi, Andrew Delong, Matthew T Weirauch & Brendan J Frey

Nature Biotechnology 33, 831-838(2015) | Cite this article




A variety of research questions in computational
biology can be tackled with machine learning

Splicing: processing of precursor RNA that creates
messenger RNA by removing non-coding regions

(introns) and connects gene-coding regions (exons) alternative
together splicing
Predicting how often exons will be included in the R

transcripts is a regression problem

RESEARCH ARTICLE

The human splicing code reveals new insights into the
genetic determinants of disease reung etal. 2016

Hui Y. Xiong'-2%", Babak Alipanahi'23", Leo J. Lee:2%", Hannes Bretschneider'-*, Daniele Merico>®7, Ryan K. C. Yuen%%7,
Yimin Hua®, Serge Gueroussov2’, Hamed S. Najafabadi'-23, Timothy R. Hughes2%7, Quaid Morris'237, Yoseph Barash'2?,
Adrian R. Krainer®, Nebojsa Jojic', Stephen W. Scherer®5.67, Benjamin J. BlencoweZ57, Brendan J. Frey'.23:4.57,10.t




A variety of research questions in computational
biology can be tackled with machine learning

Single-cell RNA-seq clustering for identification of new

cell types:

A dimensionality reduction technique is applied to

normalized count data

Clustering the data (using e.g., k-means algorithm) can

reveal new cell types

Review Article | Published: 07 January 2019

Challenges in unsupervised clustering of single-cell

RNA-seq data

Vladimir Yu Kiselev, Tallulah S. Andrews & Martin Hemberg

Nature Reviews Genetics 20, 273-282(2019) | Cite this article

principal component 2

principal component 2
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A variety of research questions in computational
biology can be tackled with machine learning

Example: antigen binding prediction
antigen

Immune receptors (proteins) bind to antigens
(e.g., parts of viruses) to help eliminate them

Given a set of receptors known to bind a
given antigen, can we predict for the new
receptor if it will bind to the antigen?

Classification problem!

receptor

Akbar et al. 2019



A variety of research questions in computational
biology can be tackled with machine learning

Example: protein structure prediction with AlphaFold

urnal of sclence/26 August 2021

'Ire

Article | Open Access | Published: 15 July 2021

Highly accurate protein structure prediction with
AlphaFold

John Jumper &, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,

Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland, Clemens

Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav

Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig_Petersen, David Reiman, Ellen Clancy, Michal

Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli & Demis Hassabis

— Show fewer authors

Nature 596, 583-589 (2021) | Cite this article



A variety of research questions in computational
biology can be tackled with machine learning

Variant calling: finding genetic variants
from sequence reads

From a pileup of the reference and read
data around each candidate variant, ML
models could determine the probabilities
for each of the three diploid genotypes

GGACGATGCTATCATAT
GGACGATGCTIGBITCATAT

Published: 24 September 2018
A universal SNP and small-indel variant caller using
deep neural networks

Ryan Poplin, Pi-Chuan Chang, David Alexander, Scott Schwartz, Thomas Colthurst, Alexander Ku,
Dan Newburger, Jojo Dijamco, Nam Nguyen, Pegah T Afshar, Sam S Gross, Lizzie Dorfman, Cory Y
McLean & Mark A DePristo &

Nature Biotechnology 36, 983-987(2018) | Cite this article

Article | Open Access | Published: 01 March 2019

A multi-task convolutional deep neural network for
variant calling in single molecule sequencing

Ruibang Luo &, Fritz J. Sedlazeck, Tak-Wah Lam & Michael C. Schatz

Nature Communications 10, Article number: 998 (2019) \ Cite this article




A variety of research questions in computational
biology can be tackled with machine learning

DeepGOPlus: improved protein function prediction from sequence 3

Maxat Kulmanov, Robert Hoehndorf

Bioinformatics, Volume 36, Issue 2, 15 January 2020, Pages 422-429, https://doi.org/10.1093/bioinformatics/btz595

Tiara: deep learning-based classification system for eukaryotic
sequences 3

Michat Karlicki, Stanistaw Antonowicz, Anna Karnkowska

Bioinformatics, Volume 38, Issue 2, 15 January 2022, Pages 344-350,
https://doi.org/10.1093/bioinformatics/btab672

Article | Published: 06 July 2020

Deep learning decodes the principles of
differential gene expression

Shinya Tasaki &g, Chris Gaiteri, Sara Mostafavi & Yanling Wang

Nature Machine Intelligence 2, 376-386(2020) | Cite this article

Learned protein embeddings for machine learning @

Kevin K Yang, Zachary Wu, Claire N Bedbrook, Frances H Arnold =

Bioinformatics, Volume 34, Issue 15, 01 August 2018, Pages 2642-2648, https://doi.org/10.1093/bioinformatics/bty178

Effective gene expression prediction from sequence by
integrating long-range interactions

R. Taylor, Yannis Assael, John Jumper, Pushmeet Kohli & & David R. Kelley &

Nature Methods 18, 1196-1203 (2021) \ Cite this article

Graph neural representational learning of RNA secondary structures for
predicting RNA-protein interactions @

Zichao Yan, William L Hamilton ™, Mathieu Blanchette ™

Bioinformatics, Volume 36, Issue Supplement_1, July 2020, Pages i276-i284, https://doi.org/10.1093/bioinformatics/btaa456

QDeep: distance-based protein model quality
estimation by residue-level ensemble error
classifications using stacked deep residual neural
networks

Md Hossain Shuvo, Sutanu Bhattacharya =, Debswapna Bhattacharya

Bioinformatics, Volume 36, Issue Supplement_1, July 2020, Pages i285-i291,
< )3/bioinformatics/btaa455




Computational biology poses unique challenges for
machine learning

Dimensionality & dataset size

Signal and noise in the data

Unknown ground truth and weakly labeled datasets
Selection bias

Ry Wy Ny

Keep in the data generation process in mind!
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Machine learning in computational biology - outline

e Introduction to machine learning:
o  What is machine learning, types of problems, assumptions, workflow, generalization

e Machine learning models and algorithms:
o Discriminative vs generative models, supervised models (logistic and linear regression, kNN,
neural networks), unsupervised models (dimensionality reduction, clustering)

e Data representation:
o Considerations and examples, one-hot encoding, feature engineering, representation learning

e Model comparison and uncertainty:
o Model assessment, model selection, uncertainty, cross-validation

e Transparency and reproducibility
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Part 2: Introduction to ML



What is machine learning?

“Machine learning refers to extracting patterns from raw data.”



What is machine learning?

“Machine learning refers to extracting patterns from raw data.”

“A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.”

Mitchell 1997



Machine learning as a function approximation task
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Machine learning as a function approximation task

label: COVID-19
specificity
examples _ : .
represented function f (antlgen-speCIfIC)
%r;euarfgre& CAYQEVNTRRYF negative
receptor CASSCFEVNTGEF (”O‘a?]'tfi‘g'e”ng) the
sequences CAYQEVNTYF

CAYQEVNELFF



Machine learning as a function approximation task
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[3.1 5.6 8.1 0.002]
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called covariate,
input variable,
predictor
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feature vector
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examples
represented
by features
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[function ]
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e.g. positive class)
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(e.g. negative class)

[0.4 21 2.2
[8.146.1 0.2 0.03N
[11.1 3.02 6.1 0.05] |

[3.1 5.6 8.1 0.02]!

feature, but also
called covariate,
input variable,
predictor

design matrix (notation: X)



Types of problems in machine learning: what does
the function f do

also called target

1. Supervised: for each example we know the label and output
a. Label can be a discrete value - a class (e.g., a receptor | kJ; |
ape

is antigen-specific or not, the picture contains a dog or a
cat): classification or

b. a continuous value (e.g., binding affinity, house price):
regression

(e.g. positive class)

class 2
(e.g. negative class)




Types of problems in machine learning: what does
the function f do

1. Supervised: classification and regression

2. Unsupervised:

a.

no label, just data

the data we have has a lot of features, and we want to
see if there is a structure in the data

[0.42.12.20.1]

there is no explicit label
[8.14 6.1 0.2 0.001]
example: there is a set of cells and we want to see if we

can group them and see if there are new groups which
could indicate new cell types

[11.1 3.02 6.1 0.05]

[3.1 5.6 8.1 0.002]



Types of problems in machine learning: what does
the function f do

1. Supervised: classification and regression
2. Unsupervised
3. Reinforcement learning:

a. dataset is not fixed, the program interacts with
environment

b. used when choosing a sequence of actions: we don’t
know the label - don’t know the optimal sequence of
actions, but we know how good an action is

c. example: discover optimal dosing policy for a medication



Types of problems in machine learning: what does
the function f do

1. Supervised: classification and regression
2. Unsupervised

3. Reinforcement learning



Machine learning as a function approximation task
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Machine learning as a function approximation task

feature vector

(one example)

examples
represented
by features
(data)

[ ERRARA i)

also called model
and hypothesis

function

also called target and
output (notation: Y)

l

label

(

e.g. positive class)

1[0.4 2.1 2.2 (0.1

[8.146.1 0.2 0\3]\

'[11.13.026.1 0.05]

design matrix (notation: X)

feature, but also
called covariate,
input variable,
predictor

class 2
(e.g. negative class)



What do we assume about the data?

A Data generation process produces the data
(data generation process results in a probability distribution p _, )

d  We assume:
A Examples in each dataset are independent of each other

A When we want to use the machine learning model on some new
data to predict a label: these new data come from the same data
generation process (same probability distribution)
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Data generation process produces the data
(data generation process results in a probability distribution p _, )

We assume:

A Examples in each dataset are independent of each other

A When we want to use the machine learning model on some new
data to predict a label: these new data come from the same data

generation process (same probability distribution)

ii.d.
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independent
and identically
distributed



What do we assume about the data?

A Data generation process produces the data
(data generation process results in a probability distribution p _, )

1 We assume:

A Examples in each dataset are independent of each other

A When we want to use the machine learning model on some new
data to predict a label: these new data come from the same data
generation process (same probability distribution)

A With these assumptions satisfied (or approximately
satisfied), we choose the data representation and
estimate the function

ii.d.
assumption

|

examples are
independent
and identically
distributed



Estimating the function (training procedure)

training procedure
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machine

raw labeled data encoded data )

learning model
CAAAERNTGELFF  + 0.50.3 1
CAAGVENTGELFF - | 0105 0
CAAQATNTGELFF  + "l 0207 1
raw labeled data encoded data




Estimating the function (training procedure)

training data
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raw labeled data

encoded data

training procedure

machine

learning model
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0.50.3 1
0.10.5 0
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Estimating the function (training procedure)

training data

I

encoded
training data

!

¢ D
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Estimating the function (training procedure)

training data

!

encoded
training data
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0.10.3
0.40.5
0304
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0.80.9
0.210.3
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OO e T = I S o R

raw labeled data

encoded data

training procedure

machine

learning model

CAAAERNTGELFF  +
CAAGVENTGELFF
CAAQATNTGELFF  +

raw labeled data

T

test data [

0503 1
0.10.5 0
0.20.7 1

encoded data

a small percent (e.g. 30%) of initial
data we set aside to test our model



Estimating the function (training procedure)

training data

!

encoded
training data
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encoded
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Estimating the function (training procedure)

o encoded
training data training data

! !

CAAAERNTGELFF + 0.10.3 1
CAAGVENTGELFF = 0.40.5 0
CAAQATNTGELFF + 0304 1
CAAQDSNTGELFF - 0.30.2 0
CASSADIEQFF o 0.80.9 0
CASSADVEAFF + 0.210.3 1
CASSASYYEQYF + 0.120.1 1

raw labeled data encoded data

training procedure

machine

CAAAERNTGELFF  + 0.50.3 1
CAAGVENTGELFF 0.10.5 0
CAAQATNTGELFF  + 0.20.7 1

raw labeled data encoded data

f f

encoded
test data test data

learning model

Task: estimate function f so that f(X) =Y
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o encoded
training data training data
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training procedure

machine
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CAAGVENTGELFF 0.10.5 0
CAAQATNTGELFF  + 0.20.7 1

raw labeled data encoded data
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encoded
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learning model

Task: estimate function f so that f(X) =Y

Training procedure:




Estimating the function (training procedure)

o encoded
training data training data
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encoded
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learning model

Task: estimate function f so that f(X) =Y
Training procedure:

1. Start with some function f with some
parameters




Estimating the function (training procedure)

encoded
training data training data

CAAAERNTGELFF + 0.10.3 1
CAAGVENTGELFF - 0.4 0.5 0
CAAQATNTGELFF + 0.30.4 1
CAAQDSNTGELFF - 0.30.2 0
CASSADIEQFF - 0.80.9 0
CASSADVEAFF + 0.210.3 1
CASSASYYEQYF + 0.12 0.1 1

raw labeled data

encoded data

training procedure

machine

CAAAERNTGELFF  +
CAAGVENTGELFF
CAAQATNTGELFF  +

0503 1
0.10.5 0
0.20.7 1

raw labeled data

T

test data

encoded data

f

encoded
test data

learning model

Task: estimate function f so that f(X) =Y
Training procedure:

1. Start with some function f with some
parameters
for example, logistic regression:

g(wx+b) = (1 + e @)
1, g(wx+b) =0.5

fx) =
0, glwx+b) < 0.5




Estimating the function (training procedure)

o encoded
training data training data
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learning model

Task: estimate function f so that f(X) =Y
Training procedure:

1.  Start with some function f with some
parameters (e.g., logistic regression)
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training data training data
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learning model

Task: estimate function f so that f(X) =Y
Training procedure:

1.  Start with some function f with some
parameters (e.g., logistic regression)

2. While training:




Estimating the function (training procedure)

training data
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training data
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encoded data

T
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f

encoded
test data

learning model

Task: estimate function f so that f(X) =Y
Training procedure:

1.  Start with some function f with some
parameters (e.g., logistic regression)

2. |While training

I

max number of iterations was
not reached and predictions
are not good enough
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training data training data
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Task: estimate function f so that f(X) =Y
Training procedure:

1.  Start with some function f with some
parameters (e.g., logistic regression)

2. While training:




Estimating the function (training procedure)

training data

encoded

training data
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Task: estimate function f so that f(X) =Y
Training procedure:

1.  Start with some function f with some
parameters (e.g., logistic regression)

2. While training:

a. Predict the label Y from the encoded
training data X




Estimating the function (training procedure)

training data

encoded

training data

CAAAERNTGELFF + 0.10.3 1
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CAAQATNTGELFF + 0304 1
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machine
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Task: estimate function f so that f(X) =Y
Training procedure:

1.  Start with some function f with some
parameters (e.g., logistic regression)

2. While training:

a. Predict the label Y from the encoded
training data X

b. Compute the cost function: how
much predictions deviate from the
label Y




Estimating the function (training procedure)

encoded
training data training data training procedure
CAAAERNTGELFF + 0.10.3 1
CAAGVENTGELFF - 0.4 0.5 0
CAAQATNTGELFF + 0.30.4 1
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encoded data .
learning model

raw labeled data

CAAAERNTGELFF  + 0503 1
CAAGVENTGELFF 0.10.5 0
CAAQATNTGELFF  + 0.20.7 1

raw labeled data encoded data

f f

encoded
test data test data

Task: estimate function f so that f(X) =Y
Training procedure:

1.  Start with some function f with some
parameters (e.g., logistic regression)

2. While training:

a. Predict the label Y from the encoded
training data X

b. Compute the cost function: how
much predictions deviate from the
label Y

c. Update the parameters of the
function f to reduce the cost function
so that we get better predictions




Estimating the function (training procedure)
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Estimating the function (training procedure)
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training data training data function
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Estimating the function (training procedure)
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examples real Y predicted Y

050.3 1 1
0.10.5 0 0
0.20.7 1 0

Accuracy: % = 67%

performance estimate

Performance has to be estimated on
data which was not used during training.
Otherwise, the performance estimate
would be overly optimistic.



Performance metrics - classification

A Depends on the problem and the data
A Classification (label values come from a discrete set):

for binary classification, this equality holds:

|

number of correct predictions
accuracy = ——— = IP + TN
total number of predictions | 71P| + TN| +|F1P| + FN|
true false false
positives positives negatives
true
Other metrics: balanced accuracy, negatives

precision, recall, sensitivity, specificity,
ROC curve, AUC, cross-entropy



Training the machine learning model

Jd  We want to minimize the cost function

A Forinstance, we can use optimization algorithm called gradient descent:

Repeat until optimal solution / max number of iterations:

initial 1. Find derivative of the cost function w.r.t. each of the
parameters parameters of the model
é . 2. Update each parameter incrementally using the cost
3 O\‘/’:E:' function as a starting point for the update
8

computation

parameter values



Training the machine learning model

cost function

We want to minimize the cost function

For instance, we can use optimization algorithm called gradient descent

Repeat until optimal solution / max number of
initial . .
parameters iterations:

1. Find derivative of the cost function w.r.t. each

optimal of the parameters of the model

value

2. Update each parameter incrementally using
the cost function as a starting point for the

update computation

parameter values



Training the machine learning model

Jd  We want to minimize the cost function

A Forinstance, we can use optimization algorithm called gradient descent

local minimum

initial
parameters

optimal value
(global minimum)

cost function

(a bit more) realistic

arameter values cost function w.r.t. \
P model parameters global minimum




Machine learning workflow

One way to set up a machine learning workflow

Sl CEIREE Important to remember: data used to assess the performance

l cannot be used during training

training dataset test

training dataset

|

model 1

train ML best ML performance
model estimate
performance
on training

dataset



Machine learning workflow

original dataset

l

training dataset

training dataset

train ML
model 1

l

performance
on training
dataset

1

test

best ML
model

One way to set up a machine learning workflow

Important to remember: data used to assess the performance
cannot be used during training

Performance on the test data (not seen
during training) will typically be worse
than performance on validation

performance
estimate

And we will come back to this later...



Generalization in ML

A Generalization is the ability of an ML model
to perform well on previously unseen data optimal model

A  We use error on the test set as an estimate :
of generalization error

[  Generalization error is the expected error
on new data

cost function (error)

generalization
gap

<~--->

training error

We want a model which will have:

model paramefers / complexity

A Small error on the training set
A Small gap between training set error and
test set error



Remember that we can talk about
generalization like this only if the i.i.d.

General izatiOn in M L assumption at least approximately holds.

A Generalization is the ability of an ML model
to perform well on previously unseen data optimal model

A  We use error on the test set as an estimate :
of generalization error

[  Generalization error is the expected error
on new data

cost function (error)

generalization
gap

<~--->

training error

We want a model which will have:

model paramefers / complexity

A Small error on the training set
A Small gap between training set error and
test set error



Overfitting and underfitting

1 Underfitting: the model was
not able to learn from the
training data - it had high
training error

A Overfitting: the generalization
gap is too large because the
model fit the training data too
well but failed to extract
patterns which would enable
good performance on the new
(test) data

cost function (error)

optimal model

underfitting overfitting

A
| generalization gap

training error |
\J

model parameters / complexity
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Part 3: ML Models and Algorithms



Machine learning in computational biology - outline

e Introduction to machine learning:
o  What is machine learning, types of problems, assumptions, workflow, generalization

e Machine learning models and algorithms:
o Discriminative vs generative models, supervised models (logistic and linear regression,
kNN, neural networks), unsupervised models (dimensionality reduction, clustering)

e Data representation:
o Considerations and examples, one-hot encoding, feature engineering, representation learning

e Model comparison and uncertainty:
o Model assessment, model selection, uncertainty, cross-validation

e Transparency and reproducibility



ML models

H

training procedure

We mentioned logistic
regression before - a
simple model for binary
classification

machine
learning model

Task: estimate function f so that f(X) =Y
Training procedure:

1. Start with some function f with some
parameters
for example, logistic regression:

g(wx +b) = (1 + ¢ @)

1, g(wx+b) =0.5
0, glwx+b) < 0.5

J&x) =




Some terminology regarding ML models and
algorithms

A Learning algorithm: a function that, given a set of examples and their labels,
constructs a model, e.g., logistic regression

A Model: a function which was fit to the data using the learning algorithm, e.g., logistic
regression with specific coefficients

Dietterich 1998

Usually model and learning algorithm are used interchangeably but they mean slightly
different things



Capacity of the model

A A model’'s capacity is its ability to fit a wide variety of functions, for instance:
linear regression:
y= b+ wx
polynomial regression:

S — 2
y=b+wx +w,x



Capacity of the model

A A model’'s capacity is its ability to fit a wide variety of functions, for instance:

linear regression:
y= b+ wx
polynomial regression:

S — 2
y=b+wx +w,x

cost function (error)

optimal model

underfitting overfitting

A
i generalization gap

training error '
v

model capacity



Searching through a hypothesis space using
optimization algorithms

ome of the local minima
could be good enough

- S
local minimum [

Fitting the parameters of the model is an

optimization problem (there are different

optimization algorithms, but one example
is gradient descent)

We can get stuck in local minima

i (a bit more) realistic
If the performance is good enough, we cost function w.rt. \ -
can accept that “suboptimal” model model parameters global minimum

[ ideal model J



Regularization restricts what models can be learned

Regularization — restricting the values of parameters of the model that can be
learned (e.g., based on our domain knowledge) so that the model performs better

on new data

Typical forms of regularization (also called penalty):

L1 (lasso):

regularization (parameters) = Y | parameter,
i

L2 (ridge):

regularization (parameters) = ) pazmmeteri2
i



Logistic Regression

A An algorithm for binary classification:

function computing
log-odds for the 4/@(

positive class

-1
+@= (1 + e~ @zt

model linear combination of
parameters mpdel pgrameter features
(coefficients) (bias or intercept)

data
(design matrix or
feature vector)
function
making the

class 1 , wx + b = 05
e [fG)|= { 89O
threshold from O, g((Dx + b) < 0.5

log-odds
value

0.8

0.6

0.4

0.2




Single nodes in the neural network do something
similar

Bias (intercept)

Weighted sum of

Non-linear activation '
inputs x

function



Neural Networks

A Nodes in neural
networks are
organized into layers

A Number of nodes in
the layer and number
of layers are
hyperparameters (not
optimized during
training, but instead
set manually)

class
probabilities

input data

A Hierarchical structure
makes them very
powerful

Fully connected neural network



Types of neural networks

A Fully connected networks:
can approximate almost any function

2\

({}"X,{{&:\
Z= tput layer

input layer
hidden layer 1 hidden layer 2

https://cs231n.github.io/neural-networks-1/

A Convolutional neural networks:
detect position-invariant local patterns

s

Global Max-pooling —>

" 16 convolution kernels
Convolutions >

Zeng et al 2016

Residual networks:
can learn both simple (e.g. identity) and more complex
functions

weight layer

X
identity

He et al 2015
Recurrent neural networks:

can be Turing-complete, often used for long(er)-term
dependencies in e.g., sequence data

® ® ®
f 1 i
A Lot et A }:
£ T lFi "
© ® ©

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Unsupervised algorithm - autoencoder example

A Autoencoder is a
neural network
trained to attempt to
copy its input to its
output

70
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Unsupervised algorithm - autoencoder example

Learned (latent) representation 4 Autoencoder is a

neural network trained
to attempt to copy its
input to its output while
passing through a
latent representation




Unsupervised algorithm - autoencoder example

A Autoencoder is a
neural network trained
to attempt to copy its
input to its output while
passing through a
latent representation

A Learned
representation can
have useful properties:
reduced
dimensionality, easy to

N Y, N Y, visualize, but there are

X Y Y X other tasks as well

encoder decoder

Learned (latent) representation
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Machine learning in computational biology - outline

e Introduction to machine learning:
o  What is machine learning, types of problems, assumptions, workflow, generalization

e Machine learning models and algorithms:
o Discriminative vs generative models, supervised models (logistic and linear regression, kNN,
neural networks), unsupervised models (dimensionality reduction, clustering)

e Data representation:
o Considerations and examples, one-hot encoding, feature engineering, representation
learning

e Model comparison and uncertainty:
o Model assessment, model selection, uncertainty, cross-validation

e Transparency and reproducibility



We are given a set of sequences... but algorithms
only understand numbers!

label: COVID-19
specificity

examples

represented function f (antigen-specific)
%’r‘;euarfgresz CAYQEVNTRRYF negative
receptor CASSCFEVNTGEF (”O‘a?]'tfi‘g'e”n% the
sequences CAYQEVNTYF

CAYQEVNELFF



We can represent sequences by their
physicochemical properties, for instance

also called target and

l

output (notation: Y)

feature vector

label

also called model

(one example)

and hypothesis

function

examples "
represented (e.g. positive class)
E’gaii?t“res 0.4 0.1 0.2 class 2

5[0_14 01 0.2 0.0 (e.g. negative class)

[0.110.020.6 0.05]
0.1 0.6 0.8 0.02]:

feature, but also
called covariate,
input variable,
predictor

design matrix (notation: X)



Some examples of data representation (encoding)

A One-hot encoding

1 K-mer frequencies

Data representation heavily depends on data, so in different domains, there will be different
representations:

When classifying images with classical approaches: number of edges, objects
When predicting the length of the trip: number of traffic lights, time of day

When predicting if an email is a spam or not: certain words, presence/absence of
personal name



Some examples of data representation (encoding)

A One-hot encoding

We have to be careful how we choose features - we

i must not introduce information that should not be there!
1 K-mer frequencies

Data representation heavily depends on data, so in different domains, there will be different
representations:

When classifying images with classical approaches: number of edges, objects
When predicting the length of the trip: number of traffic lights, time of day

When predicting if an email is a spam or not: certain words, presence/absence of
personal name



One-hot encoding

A A common way to represent

H

categorical data where only one value
can be chosen: rows represent the
possible values

Also called dummy variables in
statistics

nucleotide sequence: AATGC

is it A
isitC
isitG
isitT

l

A A T G C
1 1 0 0 O
O 0 0 0 1
O 0 0 1 O
O 0 1 0 O

one-hot encoding




K-mer frequency

3

3

Often used for sequence
representation

k-mers are (optionally
overlapping) subsequences
of length k

AATGC

, _ __ AAT
nucleotide sequence: AATGC ATG

TGC

present 3-mers: AAT, ATG, TGC

all possible 3-mers: AAA, AAC, AAG, AAT,ACA, ..., TTT

(43=64 combinations)

AAA .. [AAT\ .. /ATG\ .. /TGC, ..TTT
0 000.330...00.330...00.330...0

k-mer frequency encoding (k=3)



ML algorithm performance heavily depends on data

representation

J
3

Data representation refers to choosing and constructing features

We don’t always know it advance which features are the best for the problem:
we have to know the domain:

CAYQEVNTRRYF
CASSCFEVNTGEF
CAYQEVNTYF

CAYQEVNELFF

represent sequence as
1 if it contains Y
(tyrosine) and O if not:

[1,1,0,1,1,0, 1,11

represent the sequence
by k-mer frequency:

[0, .., 0.02, 0.03, .., 0]

raw data

data representation:
option 1

Which one is better?

data representation:
option 2



Feature engineering & feature selection

A Feature engineering: together with domain experts, ML researchers would discuss and
derive features which they believe could be useful for the model

Example: for biological sequences, there are a few popular alternatives like k-mer
frequencies and physicochemical properties

A This way a lot of features could be constructed and the best ones would be selected as
a part of fitting the model (feature selection)



Representation learning

A Most often in context of neural networks: the many layers of the network learn
a hierarchical, alternative representation of the (raw) data that was provided

as input

Article | Published: 21 October 2019

Convolutional Networks on Graphs . . . . . .

for Learsilig Molecular Fingerpeinis Unified rational protein engineering with sequence-
based deep representation learning

David D t, Dougal Maclaurin, Jorge Aguilera-Iparraguirre Ethan C. Alley, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi & George M. Church
Rafael Gémez-Bombarelli, Timothy Hirzel_, Al:in Aspuru-Guzik, Ryan P. Adams
Harvard University Nature Methods 16, 1315-1322(2019) | Cite this article




Representation learning - hidden layers in neural
networks can be seen as different representations

“A good representation is the one that
makes the learning task easier.”

Goodfellow et al. 2016

Deep neural network



Representation learning - hidden layers in neural
networks can be seen as different representations

Deep neural network



Representation learning - hidden layers in neural
networks can be seen as different representations

New data representation

Deep neural network



Representation learning with autoencoders

Learned representation A  Also used for

dimensionality
reduction and
visualization

A Different types of
autoencoders:
denoising, sparse

encoder decoder
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Uncertainty



Machine learning in computational biology - outline

e Introduction to machine learning:
o  What is machine learning, types of problems, assumptions, workflow, generalization

e Machine learning models and algorithms:
o Discriminative vs generative models, supervised models (logistic and linear regression, kNN,
neural networks), unsupervised models (dimensionality reduction, clustering)

e Data representation:
o Considerations and examples, one-hot encoding, feature engineering, representation learning

e Model comparison and uncertainty:
o Model assessment, model selection, uncertainty, cross-validation

e Transparency and reproducibility



Model selection and model assessment

In a typical workflow, we perform two tasks:

Model selection: estimating the performance of different models in order to
choose the best one

Model assessment: having chosen the final model, estimating its prediction
error (generalization error) on new data

Definitions from: Hastie et al. 2009



Model selection and model assessment

In a typical workflow, we perform two tasks:

Model selection: estimating the performance of |different models|in order to
choose the best one \

different learning algorithms or same
learning algorithms, but different
hyperparameters (e.g., different number of
layers in a neural network)

Model assessment: having chosen the final model, estimating its prediction
error (generalization error) on new data

Definitions from: Hastie et al. 2009



Evaluation of an ML algorithm

A To do model selection (and model assessment) we need to know how to do model
evaluation

A A suitable cost function has to be chosen



Evaluation of a ML algorithm

A Two ML algorithms are different if and only if their percentage of correct
classifications would be different on average when trained on a training set of a
given fixed size and tested on all data points in the population

Dietterich 1998

Of course we cannot test on the entire population, but we should be aware that the
difference we see in one particular result might not be the true difference between
algorithms



Evaluation of an ML algorithm: random holdout test
set

A The simplest scenario: split the dataset to train/test dataset

original dataset

Test dataset is typically 25-30% of the original
dataset, but in different applications, these
numbers vary from 10 to 50%

training dataset test dataset

A Estimate performance of the algorithm on the test set



Evaluation of a ML algorithm: random holdout test
sets

A A bit more robust scenario: split the dataset randomly into multiple train/test
datasets

original dataset

l

Test dataset is typically 25-30% of the original dataset.

training dataset test dataset

1 Estimate performance of the algorithm as the average of the performances on
test sets



Evaluation of a ML algorithm: random holdout test
sets

A A bit more robust scenario: split the dataset randomly into multiple train/test
datasets

original dataset

l

Test dataset is typically 25-30% of the original dataset.

training dataset test dataset

1 Estimate performance of the algorithm as the average of the performances on

test sets
A The same examples could be in multiple test sets: biased estimate of the

performance!



K-fold cross validation

A K-fold cross validation (CV) refers to splitting the data into k training and test
set pairs so that each example is once a part of the test set

original dataset |

l

The model is trained and
evaluated on each train/test set

pair
split 1 Ctest d  The estimated performance is the
split 2 - obtained as average over all test

set performances

split 3 -

a
split 4 -

M|
split 5 -

Typical values of k: 5, 10

Leave-one-out CV



How to do model selection

Split the original dataset
to train/test dataset per
one of the previous
strategies (e.g., 5-fold
CV)

original dataset ML model 1 ML model 2

For each model compute
the performance as the
average of performances
on test sets (as
described in the previous
slide)

Select the model with average average
performance 1 performance 2
best average

performance
selected model:

ML model 1



How to do model selection

1. Split the original dataset
to train/test dataset per
one of the previous
strategies (e.g., 5-fold
CV)

original dataset ML model 1 ML model 2

2. For each model compute
the performance as the
average of performances
on test sets (as
described in the previous
slide)

3. Select the model with | L derse  averese
best average The performance we got here is not

the generalization performance!
performance

selected model:

ML model 1



Model assessment uses a separate test set not used
during model selection

original dataset Data used to assess the performance cannot be used during
l training or when selecting between ML approaches
training dataset validation test
| |
________________________________ {_______________________________-I
| training dataset model selection and I
S S training :
¥ ! ! |
1 train ML train ML | i
¥ model 1 model 2 i
i . choose the best ! best ML performance
L / \ — model based on | — .
b [ | model estimate
i performance :
"1 performance 1 performance 2 l |
t ) ! performance 2

_________________________________________________________________



Model assessment with multiple test sets: a more
robust estimate

A We can employ all the same techniques (e.g., CV) to split the data, do model selection
as described before and use separate test sets to estimate generalization performance

original dataset

l

training dataset validation test

|||| '

..... r average

T |—

P N — % performance
[ T 11 B — .
model selection and ~ ————— best ML model £—————  performance estimate

training L (split 1) estimate 1



Recommendations
for ML in biology

DOME: recommendations for supervised machine
learning validation in biology

Learning_Focus Group, Jennifer Harrow &, Fotis E. Psomopoulos & & Silvio C. E. Tosatto

Nature Methods 18, 1122-1127 (2021) \ Cite this article

Table 1| Supervised ML in biology: concerns, the consequences they impart and recommendations

Broad topic Be on the lookout for Consequences Recommendation(s)
Data o Inadequate data size & quality o Data not representative of domain e Use independent optimization (! ing) and
e Inappropriate partitioning, dependence application evaluation (testing) sets. This is especially
between train and test data o Unreliable or biased performance important for meta algorithms, where independence
o Class imbalance evaluation of multiple training sets must be shown to be
o No access to data o Cannot check data credibility independent of the evaluation (testing) sets.

© Release data, preferably using appropriate
long-term repositories, and include exact splits.

o Offer sufficient evidence of data size & distribution
being representative of the domain.

Optimization e Overfitting, underfitting and illegal ® Reported performance is too o Clarify that evaluation sets were not used for
parameter tuning optimistic or too pessimistic feature selection, prepr ing steps or p t
o Imprecise parameters and protocols given e The model models noise or misses  tuning.
relevant relationships o Report indicators on training and testing data that
© Results are not reproducible can aid in assessing the possibility of under- or
overfitting; for example, train vs. test error.

o Release definitions of all algorithmic
hyperparameters, regularization protocols,
parameters and optimization protocol.

o For neural networks, release definitions of training
and learning curves.

o Include explicit model validation techniques, such as
N-fold cross-validation.

Model e Unclear if black box or interpretable model e An interpretable model shows no e Describe the choice of black box or interpretable
o No access to resulting source code, trained  explainable behavior model. If interpretable, show examples of
models & data e Cannot cross compare methods interpretable output.
® Execution time impractical & reproducibility, or check data © Release documented source code + models +
credibility executable + user interface/webserver + software
© Model takes too much time to containers.
produce results © Report execution time averaged across many
repeats. If computationally tough, compare to similar
methods.
Evaluation e Performance measures inadequate © Biased performance measures e Compare with public methods & simple models

o No comparisons to baselines or other
methods
o Highly variable performance

reported

e The method is falsely claimed as
state-of-the-art

e Unpredictable performance in
production

(baselines).

o Adopt ity-validated and
benct Kk d for evaluation

e Compare related methods and alternatives on the
same dataset.

o Evaluate performance on a final independent held-out
set.

o Use confidence intervals/error intervals and
statistical tests to gauge prediction robustness.

Key recommendations are bolded.
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Machine learning in computational biology - outline

e Introduction to machine learning:
o  What is machine learning, types of problems, assumptions, workflow, generalization

e Machine learning models and algorithms:
o Discriminative vs generative models, supervised models (logistic and linear regression, kNN,
neural networks), unsupervised models (dimensionality reduction, clustering)

e Data representation:
o Considerations and examples, one-hot encoding, feature engineering, representation learning

e Model comparison and uncertainty:
o Model assessment, model selection, uncertainty, cross-validation

e Transparency and reproducibility



Transparency & interpretability are crucial for ML

A “Transparency refers to how easily a stakeholder can examine the model
and understand, or explain, how the model operates when combining the
inputs to produce output, regardless how accurate the model is”.

Wainberg et al. 2018

A Transparency would enable experts to check the model prediction and use it
or check it more

1 Interpretability: “understanding the patterns in the data may be just as
important as fitting the data”

Ching et al. 2018



Interpretability of neural networks

d  Some techniques:

Visualizing filters in (the first layers of) CNNs
Clustering high contribution regions to derive motifs
Backpropagating w.r.t. input data (saliency maps)
Visualizing class activation maps
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Reproducibility in ML

Reproducibility: “the provision of enough detail about
study procedures and data so the same procedures Reproducibility standards for machine learning

could be exactly repeated” in the life sciences

Benjamin J. Heil, Michael M. Hoffman, Florian Markowetz, Su-In Lee, Casey S. Greene ™ &

Goodman et al. 2016 Stephanie C. Hicks &

Achieving reproducibility:

Nature Methods 18, 1132-1135 (2021) | Cite this article

A Keep track how each result is produced
4 Record all intermediate results [in standardized

Bronze Silver Gold

Data published and downloadable X X X

formats] ,
) Models published and downloadable X X X
= Store raw data behlnd a” pIOtS Source code published and downloadable X X X
d Provide pu blic access to SCFiptS, runs and Dependencies set up in a single command X X
resu |tS Key analysis details recorded X X
O  Archive the exact versions of all external Analyslscomponsnteeet 1o dotaministic x|
Entire analysis reproducible with a single command X

programs used
(A Use version control
Sandve et al. 2013



Reproducibility in ML

A The code and models
should be publicly available
(GitHub, Zenodo, or other
services)

1 Possible to inspect, validate,
(re)use, and improve models

TheKipoi repository accelerates community exchange
and reuse of predictive models for genomics

Ziga Avsec &, Roman Kreuzhuber, Johnny Israeli, Nancy Xu, Jun Cheng, Avanti Shrikumar, Abhimanyu

Gagneur

Nature Biotechnology 37, 592-600 (2019) | Cite this article

Trained model Repository Usage

Train Python, R, command line

e h

Predict

° =- (- =

Numpy Bedtools
Pandas Gffutils

Score variants
N7
O -ommes - B

DeepSEA

Extract feature importance

W DeepBind aGeTAsT
accTacT— (D G - 5
; . T Q comaaT-» (D G -~ 2R
%O
%

MaxEntScan Retrain and transfer models
K Scikit-l .
TenseorranIow CI:' I hZ:m (CRCSng) ===
" c T O Emrm
PyTorch

Build new models

Automated [ Model 1
' nightly tests ([ Model2 |
L
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