

UiO **Universitetet i Oslo**

Machine Learning in Computational Biology: Overview

IN-BIOS5000/IN-BIOS9000

Milena Pavlović Biomedical Informatics Research Group Department of Informatics

milenpa@uio.no

Disclaimer

I am a machine learning researcher, not a biologist: you are the experts there!

Learning aims

- Key points should be the intuition and high-level understanding of what machine learning is, types of problems it can help solving
- □ Machine learning is not a black box: every choice we make has a meaning
- Overall understanding that there is a data representation component and a machine learning algorithm
- High-level understanding of machine learning workflow, comparison and uncertainty related to it

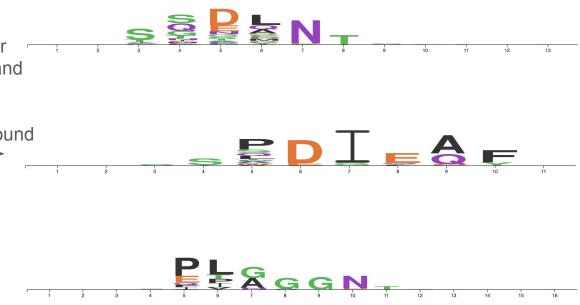
CDR3	V gene	J gene	Species
CAAAERNTGELFF	TRBV28*01	TRBJ2-2*01	HomoSapiens
CAAGVENTGELFF	TRBV5-6*01	TRBJ2-2*01	HomoSapiens
CAAQATNTGELFF	TRBV19*01	TRBJ2-2*01	HomoSapiens
CAAQDSNTGELFF	TRBV5-1*01	TRBJ2-2*01	HomoSapiens
CAAQMTNTGELFF	TRBV19*01	TRBJ2-2*01	HomoSapiens
CAAQNLNTGELFF	TRBV15*01	TRBJ2-2*01	HomoSapiens
CAARDQRDLNTGELFF	TRBV2*01	TRBJ2-2*01	HomoSapiens
CAASDPNTGELFF	TRBV12-3*01	TRBJ2-2*01	HomoSapiens
CAASEMNTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens
CACQELNTGELFF	TRBV30*01	TRBJ2-2*01	HomoSapiens
CAEGELNTGELFF	TRBV7-2*01	TRBJ2-2*01	HomoSapiens
CAGADSNTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens
CAGDYLNTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens
CAGGDPNTGELFF	TRBV7-9*01	TRBJ2-2*01	HomoSapiens
CAGGDSNTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens
CAGGRGNTGELFF	TRBV12-3*01	TRBJ2-2*01	HomoSapiens
CAGGVNPNTGELFF	TRBV5-1*01	TRBJ2-2*01	HomoSapiens
CAGQDLNTGELFF	TRBV7-2*01	TRBJ2-2*01	HomoSapiens
CAGQNLNTGELFF	TRBV19*01	TRBJ2-2*01	HomoSapiens
CAGQRANTGELFF	TRBV19*01	TRBJ2-2*01	HomoSapiens
CAIADANTGELFF	TRBV5-1*01	TRBJ2-2*01	HomoSapiens
CAIGDENTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens
CAIGDRNTGELFF	TRBV5-5*01	TRBJ2-2*01	HomoSapiens
CAIGDRSSGEQYF	TRBV5-4*01	TRBJ2-7*01	HomoSapiens
CAIQDLNTGELFF	TRBV13*01	TRBJ2-2*01	HomoSapiens
CAIQESNTGELFF	TRBV10-3*01	TRBJ2-2*01	HomoSapiens
CAIQYANTGELFF	TRBV15*01	TRBJ2-2*01	HomoSapiens
CAIRTSGMLNTGELFF	TRBV2*01	TRBJ2-2*01	HomoSapiens

CDR3	V gene	J gene	Species	
CAAAERNTGELFF	TRBV28*01	TRBJ2-2*01	HomoSapiens	
CAAGVENTGELFF	TRBV5-6*01	TRBJ2-2*01	HomoSapiens	
CAAQATNTGELFF	TRBV19*01	TRBJ2-2*01	HomoSapiens	
CAAQDSNTGELFF	TRBV5-1*01	TRBJ2-2*01	HomoSapiens	
CAAQMTNTGELFF	TRBV19*01	TRBJ2-2*01	HomoSapiens	
CAAQNLNTGELFF	TRBV15*01	TRBJ2-2*01	HomoSapiens	
CAARDQRDLNTGELFF	TRBV2*01	TRBJ2-2*01	HomoSapiens	
CAASDPNTGELFF	TRBV12-3*01	TRBJ2-2*01	HomoSapiens	
CAASEMNTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens	dis
CACQELNTGELFF	TRBV30*01	TRBJ2-2*01	HomoSapiens	
CAEGELNTGELFF	TRBV7-2*01	TRBJ2-2*01	HomoSapiens	mc
CAGADSNTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens	the
CAGDYLNTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens	uic
CAGGDPNTGELFF	TRBV7-9*01	TRBJ2-2*01	HomoSapiens	
AGGDSNTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens	
CAGGRGNTGELFF	TRBV12-3*01	TRBJ2-2*01	HomoSapiens	
CAGGVNPNTGELFF	TRBV5-1*01	TRBJ2-2*01	HomoSapiens	
CAGQDLNTGELFF	TRBV7-2*01	TRBJ2-2*01	HomoSapiens	
CAGQNLNTGELFF	TRBV19*01	TRBJ2-2*01	HomoSapiens	
CAGQRANTGELFF	TRBV19*01	TRBJ2-2*01	HomoSapiens	
CAIADANTGELFF	TRBV5-1*01	TRBJ2-2*01	HomoSapiens	
CAIGDENTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens	
CAIGDRNTGELFF	TRBV5-5*01	TRBJ2-2*01	HomoSapiens	
CAIGDRSSGEQYF	TRBV5-4*01	TRBJ2-7*01	HomoSapiens	
CAIQDLNTGELFF	TRBV13*01	TRBJ2-2*01	HomoSapiens	
CAIQESNTGELFF	TRBV10-3*01	TRBJ2-2*01	HomoSapiens	
CAIQYANTGELFF	TRBV15*01	TRBJ2-2*01	HomoSapiens	
CAIRTSGMLNTGELFF	TRBV2*01	TRBJ2-2*01	HomoSapiens	

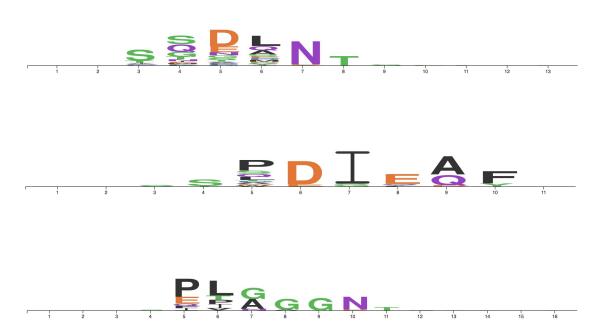
Motifs and data from VDJdb (Bagaev et al. 2020)

CDR3	V gene	J gene	Species
CAAAERNTGELFF	TRBV28*01	TRBJ2-2*01	HomoSapiens
CAAGVENTGELFF	TRBV5-6*01	TRBJ2-2*01	HomoSapiens
CAAQATNTGELFF	TRBV19*01	TRBJ2-2*01	HomoSapiens
CAAQDSNTGELFF	TRBV5-1*01	TRBJ2-2*01	HomoSapiens
CAAQMTNTGELFF	TRBV19*01	TRBJ2-2*01	HomoSapiens
CAAQNLNTGELFF	TRBV15*01	TRBJ2-2*01	HomoSapiens
CAARDQRDLNTGELFF	TRBV2*01	TRBJ2-2*01	HomoSapiens
CAASDPNTGELFF	TRBV12-3*01	TRBJ2-2*01	HomoSapiens
CAASEMNTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens
CACQELNTGELFF	TRBV30*01	TRBJ2-2*01	HomoSapiens
CAEGELNTGELFF	TRBV7-2*01	TRBJ2-2*01	HomoSapiens
CAGADSNTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens
CAGDYLNTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens
CAGGDPNTGELFF	TRBV7-9*01	TRBJ2-2*01	HomoSapiens
CAGGDSNTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens
CAGGRGNTGELFF	TRBV12-3*01	TRBJ2-2*01	HomoSapiens
CAGGVNPNTGELFF	TRBV5-1*01	TRBJ2-2*01	HomoSapiens
CAGQDLNTGELFF	TRBV7-2*01	TRBJ2-2*01	HomoSapiens
CAGQNLNTGELFF	TRBV19*01	TRBJ2-2*01	HomoSapiens
CAGQRANTGELFF	TRBV19*01	TRBJ2-2*01	HomoSapiens
CAIADANTGELFF	TRBV5-1*01	TRBJ2-2*01	HomoSapiens
CAIGDENTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens
CAIGDRNTGELFF	TRBV5-5*01	TRBJ2-2*01	HomoSapiens
CAIGDRSSGEQYF	TRBV5-4*01	TRBJ2-7*01	HomoSapiens
CAIQDLNTGELFF	TRBV13*01	TRBJ2-2*01	HomoSapiens
CAIQESNTGELFF	TRBV10-3*01	TRBJ2-2*01	HomoSapiens
CAIQYANTGELFF	TRBV15*01	TRBJ2-2*01	HomoSapiens
CAIRTSGMLNTGELFF	TRBV2*01	TRBJ2-2*01	HomoSapiens

CDR3	V gene	J gene	Species								
AAAERNTGELFF	TRBV28*01	TRBJ2-2*01	HomoSapiens								
AAGVENTGELFF	TRBV5-6*01	TRBJ2-2*01	HomoSapiens								
CAAQATNTGELFF	TRBV19*01	TRBJ2-2*01	HomoSapiens								
AAQDSNTGELFF	TRBV5-1*01	TRBJ2-2*01	HomoSapiens								
CAAQMTNTGELFF	TRBV19*01	TRBJ2-2*01	HomoSapiens								
CAAQNLNTGELFF	TRBV15*01	TRBJ2-2*01	HomoSapiens	discover						2	
CAARDQRDLNTGELFF	TRBV2*01	TRBJ2-2*01	HomoSapiens			1		2	3		4
AASDPNTGELFF	TRBV12-3*01	TRBJ2-2*01	HomoSapiens	motifs and							
CAASEMNTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens	romovo							
ACQELNTGELFF	TRBV30*01	TRBJ2-2*01	HomoSapiens	remove							
CAEGELNTGELFF	TRBV7-2*01	TRBJ2-2*01	HomoSapiens	genetic							
CAGADSNTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens	0	2						
AGDYLNTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens	backgrour	IÜ						
CAGGDPNTGELFF	TRBV7-9*01	TRBJ2-2*01	HomoSapiens	>							
AGGDSNTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens		r	ł		2		3	
AGGRGNTGELFF	TRBV12-3*01	TRBJ2-2*01	HomoSapiens								
CAGGVNPNTGELFF	TRBV5-1*01	TRBJ2-2*01	HomoSapiens								
CAGQDLNTGELFF	TRBV7-2*01	TRBJ2-2*01	HomoSapiens								
CAGQNLNTGELFF	TRBV19*01	TRBJ2-2*01	HomoSapiens								
CAGQRANTGELFF	TRBV19*01	TRBJ2-2*01	HomoSapiens								
CAIADANTGELFF	TRBV5-1*01	TRBJ2-2*01	HomoSapiens								
CAIGDENTGELFF	TRBV7-8*01	TRBJ2-2*01	HomoSapiens								Р
CAIGDRNTGELFF	TRBV5-5*01	TRBJ2-2*01	HomoSapiens								
CAIGDRSSGEQYF	TRBV5-4*01	TRBJ2-7*01	HomoSapiens		r	1	2		3	4	5
CAIQDLNTGELFF	TRBV13*01	TRBJ2-2*01	HomoSapiens								
CAIQESNTGELFF	TRBV10-3*01	TRBJ2-2*01	HomoSapiens								
CAIQYANTGELFF	TRBV15*01	TRBJ2-2*01	HomoSapiens								
CAIRTSGMLNTGELFF	TRBV2*01	TRBJ2-2*01	HomoSapiens								



- One way to approach an analysis: make a position weight matrix showing product multinomial distribution of amino acids
- But what if we want to predict if a sequence is specific to a virus or not?



A set of methods that allow for making inferences about the data

Example: will the receptor bind to the virus or not? - we can fit a logistic regression model on receptor data and then predict binding for new receptors

CASSADVEAFF + CASSASYYEQYF +	CAAQATNTGELFF + CAAQDSNTGELFF - CASSADIEQFF - CASSADVEAFF +								
	0,100,12,12,11								

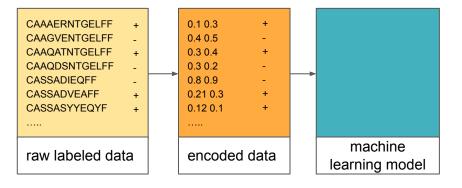
A set of methods that allow for making inferences about the data

Example: will the receptor bind to the virus or not? - we can fit a logistic regression model on receptor data and then predict binding for new receptors

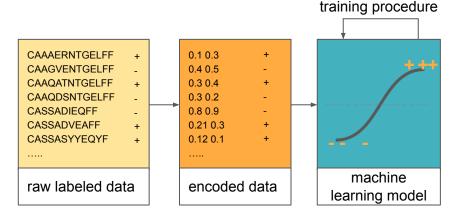
CAAAERNTGELFF	+							
CAAGVENTGELFF -								
CAAQATNTGELFF +								
CAAQDSNTGELFF	-							
CASSADIEQFF	-							
CASSADVEAFF +								
CASSASYYEQYF	+							
raw labeled da	ta							

CAAAERNTGELFF CAAGVENTGELFF CAAQATNTGELFF raw unlabeled data

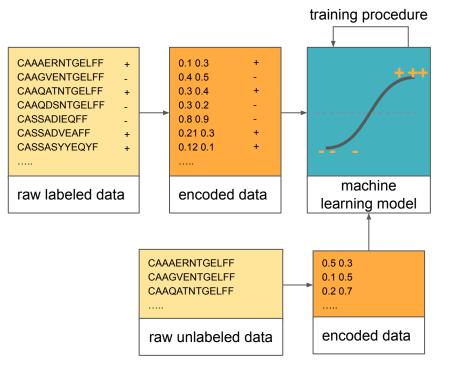
- A set of methods that allow for making inferences about the data
- Example: will the receptor bind to the virus or not? - we can fit a logistic regression model on receptor data and then predict binding for new receptors



- A set of methods that allow for making inferences about the data
- Example: will the receptor bind to the virus or not? - we can fit a logistic regression model on receptor data and then predict binding for new receptors



- A set of methods that allow for making inferences about the data
- Example: will the receptor bind to the virus or not? - we can fit a logistic regression model on receptor data and then predict binding for new receptors



A set of methods that training procedure allow for making 0.1 0.3 CAAAERNTGELFF + + 0.4 0.5 CAAGVENTGELFF inferences about the data + 0.3 0.4 + CAAQATNTGELFF + + CAAQDSNTGELFF 0.3 0.2 0.8 0.9 CASSADIEQFF 2 Example: will the 0.21 0.3 CASSADVEAFF + + CASSASYYEQYF 0.12 0.1 + + receptor bind to the virus machine or not? - we can fit a raw labeled data encoded data predictions learning model logistic regression model on receptor data and CAAAERNTGELFF 0.5 0.3 0.1 0.5 CAAGVENTGELFF then predict binding for CAAQATNTGELFF 0.2 0.7 new receptors encoded data raw unlabeled data

ML and computational biology development timeline

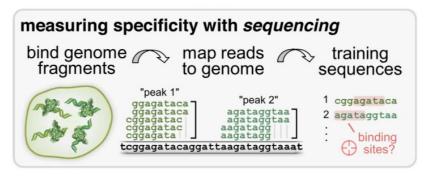
				86 Backpropagation	•	1999 Re	curren	nt networks used		CRISPR–Cas9 gene g technology invented	2017 Deep learning improves short-read DNA variant calling		
1975 Sanger sequencing invented			in multi-layer neural netwo		1		ein contact maps dom forest	2012 Deep learning wins Merck Molecular Activity Challenge		2018 Deep learning improves in-hospital mortality prediction			
			1988 More "AI W	Vinter"		ented	John lorest		, ,	from electronic health records			
Precursor to	ptron invented o neural networks.		First DNA genome enced (viral)	Pinker & Prince argu neural networks will f model natural langua	fail to		1 Hum Juenced	nan genome d		Deep learning wins Net challenge	2018 Deep learning improves template-free		
crystallography of protein (PDB 1963 Ultrasound			Protein Data Bank		nvolutional neural		matrix multiply		014 Generative adversarial	protein structure prediction			
		1) launched 1980 MRI image iirst used in clinic	networks invented LeCun proposes a layer for spatial data, trainable by		Dev	velops i	ercial GPUs into an enabling y for deep learning.	20	etworks (GANS) invented 014 Deep learning aproves splice prediction	2018 Deep learning beats dermatologists at detecting skin cancer		
				backpropagatio			mology	, , , ,					
1960	•1970	19	80	1990		2000	1 1	2010	•	Rise of AI			
1953 DNA	1969 "Al Winter" b	0	1982 Perceptron used for gene-finding	1987 Sanger	1997 Long s		0	2008 1000 Ge			learning improves		
structure	that single-layer Stormo trains perceptrons cannot learn perceptron to d			3 sequencing commercialized	term memor networks inv)	project launch		c .	t microscopy screening		
discovered							1995 Wake-slee	ep for		2007 ChIP-seq in A wave of large data			learning improves
			sites of E. coli.	1	deep autoencoo	ders		related methods ens		2016 Deep	learning improves base calling		
		1982 (Jonbank		1995 Support vector 2005 First genome-wi				al nanopore sequencers					
			database launched		machine (SVM) invented association study (G			2010 Haman genome bequen					
					1995 Microarray used for genoty		2003 E	ENCODE project laun	iched		improves protein binding prediction		
						1					boosts power of Alzheimer's ved patient enrollment		

Transcription factor binding prediction:

Transcription factors are proteins which bind to certain sites in DNA and regulate transcription of genes

Given a set of DNA sequences for which we know if they will bind or not, how can we predict if a transcription factor will bind to a new DNA sequence?

Classification problem!



Leung et al. 2016

Published: 27 July 2015

Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning

Babak Alipanahi, Andrew Delong, Matthew T Weirauch & Brendan J Frey 🖂

Nature Biotechnology 33, 831–838(2015) | Cite this article

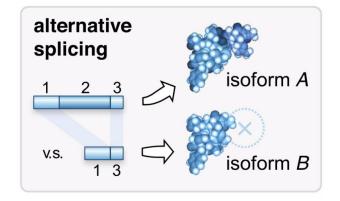
Splicing: processing of precursor RNA that creates messenger RNA by removing non-coding regions (introns) and connects gene-coding regions (exons) together

Predicting how often exons will be included in the transcripts is a regression problem

RESEARCH ARTICLE

The human splicing code reveals new insights into the genetic determinants of disease

Hui Y. Xiong^{1,2,3,*}, Babak Alipanahi^{1,2,3,*}, Leo J. Lee^{1,2,3,*}, Hannes Bretschneider^{1,3,4}, Daniele Merico^{5,6,7}, Ryan K. C. Yuen^{5,6,7}, Yimin Hua⁸, Serge Gueroussov^{2,7}, Hamed S. Najafabadi^{1,2,3}, Timothy R. Hughes^{2,3,7}, Quaid Morris^{1,2,3,7}, Yoseph Barash^{1,2,9}, Adrian R. Krainer⁸, Nebojsa Jojic¹⁰, Stephen W. Scherer^{3,5,6,7}, Benjamin J. Blencowe^{2,5,7}, Brendan J. Frey^{1,2,3,4,5,7,10,†}



Leung et al. 2016

Single-cell RNA-seq clustering for identification of new cell types:

A dimensionality reduction technique is applied to normalized count data

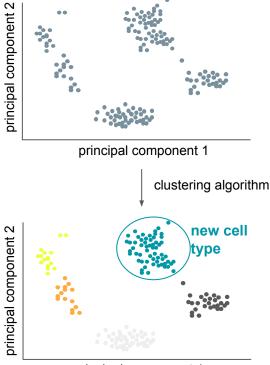
Clustering the data (using e.g., k-means algorithm) can reveal new cell types

Review Article | Published: 07 January 2019

Challenges in unsupervised clustering of single-cell RNA-seq data

Vladimir Yu Kiselev, Tallulah S. Andrews & Martin Hemberg 🖂

Nature Reviews Genetics 20, 273-282(2019) | Cite this article



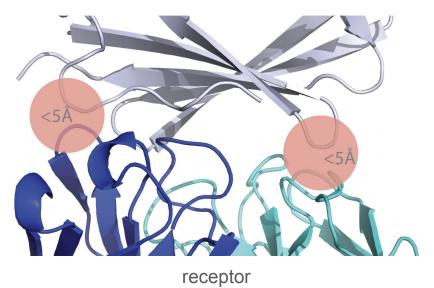
principal component 1

Example: antigen binding prediction

Immune receptors (proteins) bind to antigens (e.g., parts of viruses) to help eliminate them

Given a set of receptors known to bind a given antigen, can we predict for the new receptor if it will bind to the antigen?

Classification problem!



antigen

Example: protein structure prediction with AlphaFold

Article Open Access Published: 15 July 2021

Highly accurate protein structure prediction with AlphaFold

John Jumper ⊡, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli & Demis Hassabis ⊡ — Show fewer authors

Nature 596, 583–589 (2021) Cite this article

Variant calling: finding genetic variants from sequence reads

From a pileup of the reference and read data around each candidate variant, ML models could determine the probabilities for each of the three diploid genotypes

G G A C G A T G C T <mark>A</mark> T C A T A T G G A C G A T G C T <mark>G</mark> T C A T A T

Published: 24 September 2018

A universal SNP and small-indel variant caller using deep neural networks

Ryan Poplin, Pi-Chuan Chang, David Alexander, Scott Schwartz, Thomas Colthurst, Alexander Ku, Dan Newburger, Jojo Dijamco, Nam Nguyen, Pegah T Afshar, Sam S Gross, Lizzie Dorfman, Cory Y McLean & Mark A DePristo 🖂

Nature Biotechnology 36, 983-987(2018) | Cite this article

Article | Open Access | Published: 01 March 2019

A multi-task convolutional deep neural network for variant calling in single molecule sequencing

Ruibang Luo 🖂, Fritz J. Sedlazeck, Tak-Wah Lam & Michael C. Schatz

Nature Communications 10, Article number: 998 (2019) | Cite this article

DeepGOPlus: improved protein function prediction from sequence Maxat Kulmanov, Robert Hoehndorf 🕿

Bioinformatics, Volume 36, Issue 2, 15 January 2020, Pages 422–429, https://doi.org/10.1093/bioinformatics/btz595

Tiara: deep learning-based classification system for eukaryotic sequences 👌

Michał Karlicki, Stanisław Antonowicz, Anna Karnkowska 🖾

Bioinformatics, Volume 38, Issue 2, 15 January 2022, Pages 344–350, https://doi.org/10.1093/bioinformatics/btab672

Learned protein embeddings for machine learning 🎟

Kevin K Yang, Zachary Wu, Claire N Bedbrook, Frances H Arnold 💌

Bioinformatics, Volume 34, Issue 15, 01 August 2018, Pages 2642–2648, https://doi.org/10.1093/bioinformatics/bty178

Graph neural representational learning of RNA secondary structures for predicting RNA-protein interactions $\frac{1}{2}$

Zichao Yan, William L Hamilton 🐱, Mathieu Blanchette 🐱

Bioinformatics, Volume 36, Issue Supplement_1, July 2020, Pages i276–i284, https://doi.org/10.1093/bioinformatics/btaa456

Article | Published: 06 July 2020

Deep learning decodes the principles of differential gene expression

Shinya Tasaki 🖂, Chris Gaiteri, Sara Mostafavi & Yanling Wang

Nature Machine Intelligence 2, 376–386(2020) | Cite this article

Effective gene expression prediction from sequence by integrating long-range interactions

Žiga Avsec 🖂 Vikram Agarwal, Daniel Visentin, Joseph R. Ledsam, Agnieszka Grabska-Barwinska, Kyle R. Taylor, Yannis Assael, John Jumper, Pushmeet Kohli 🖂 & David R. Kelley 🖂

Nature Methods 18, 1196–1203 (2021) Cite this article

QDeep: distance-based protein model quality estimation by residue-level ensemble error classifications using stacked deep residual neural networks $\hat{\partial}$

Md Hossain Shuvo, Sutanu Bhattacharya 🖾, Debswapna Bhattacharya 🖾

Bioinformatics, Volume 36, Issue Supplement_1, July 2020, Pages i285–i291, https://doi.org/10.1093/bioinformatics/btaa455

Computational biology poses unique challenges for machine learning

- Dimensionality & dataset size
- Gignal and noise in the data
- Unknown ground truth and weakly labeled datasets
- Selection bias

Keep in the data generation process in mind!

References

Wainberg M, Merico D, Delong A, Frey BJ. Deep learning in biomedicine. *Nature Biotechnology*. 2018;36(9):829-838. doi:<u>10.1038/nbt.4233</u>

Bagaev DV, Vroomans RMA, Samir J, et al. VDJdb in 2019: database extension, new analysis infrastructure and a T-cell receptor motif compendium. *Nucleic Acids Res.* 2020;48(D1):D1057-D1062. doi:<u>10.1093/nar/gkz874</u>

Akbar R, Robert PA, Pavlović M, et al. A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding. *bioRxiv*. Published online November 30, 2019:759498. doi:<u>10.1101/759498</u>

Leung MKK, Delong A, Alipanahi B, Frey BJ. Machine Learning in Genomic Medicine: A Review of Computational Problems and Data Sets. *Proceedings of the IEEE*. 2016;104(1):176-197. doi:10.1109/JPROC.2015.2494198

Machine learning in computational biology - outline

- Introduction to machine learning:
 - What is machine learning, types of problems, assumptions, workflow, generalization
- Machine learning models and algorithms:
 - Discriminative vs generative models, supervised models (logistic and linear regression, kNN, neural networks), unsupervised models (dimensionality reduction, clustering)
- Data representation:
 - Considerations and examples, one-hot encoding, feature engineering, representation learning
- Model comparison and uncertainty:
 - Model assessment, model selection, uncertainty, cross-validation
- Transparency and reproducibility

Machine learning in computational biology - outline

- Introduction to machine learning:
 - What is machine learning, types of problems, assumptions, workflow, generalization
- Machine learning models and algorithms:
 - Discriminative vs generative models, supervised models (logistic and linear regression, kNN, neural networks), unsupervised models (dimensionality reduction, clustering)
- Data representation:
 - Considerations and examples, one-hot encoding, feature engineering, representation learning
- Model comparison and uncertainty:
 - Model assessment, model selection, uncertainty, cross-validation
- Transparency and reproducibility

UiO **Universitetet i Oslo**

Part 2: Introduction to ML

What is machine learning?

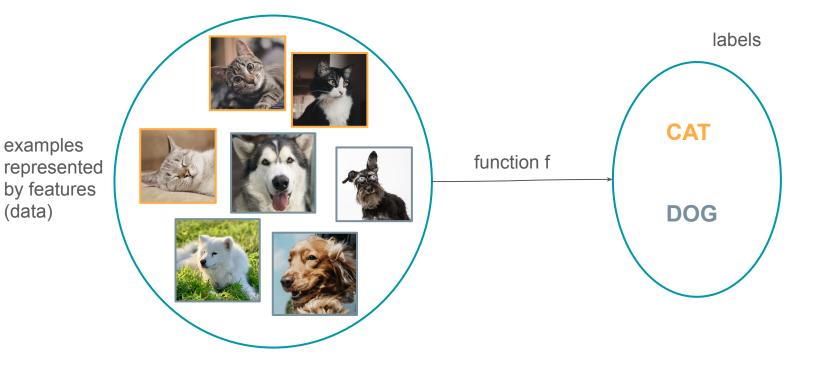
"Machine learning refers to extracting patterns from raw data."

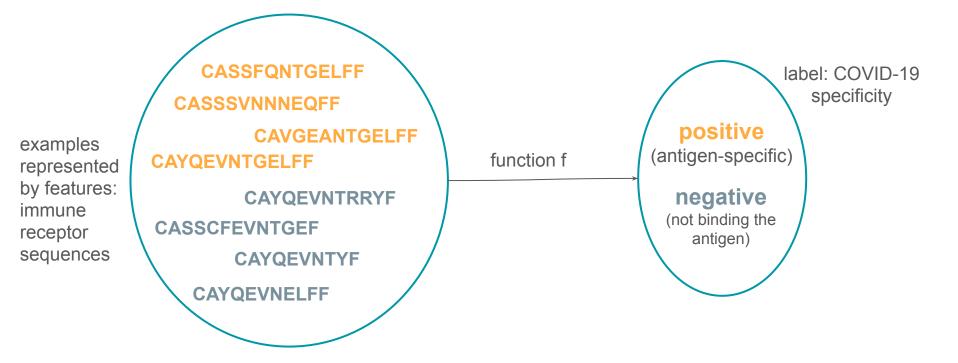
What is machine learning?

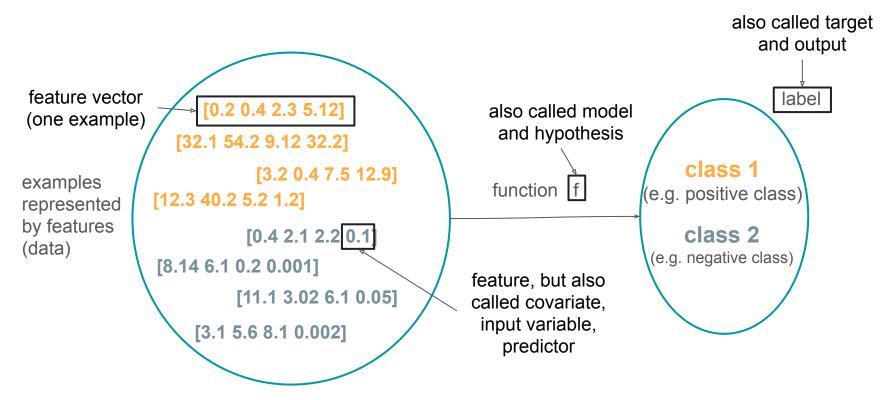
"Machine learning refers to extracting patterns from raw data."

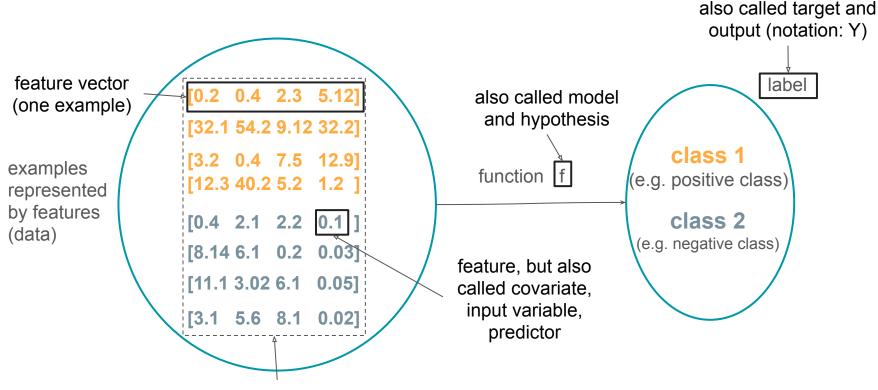
"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Mitchell 1997

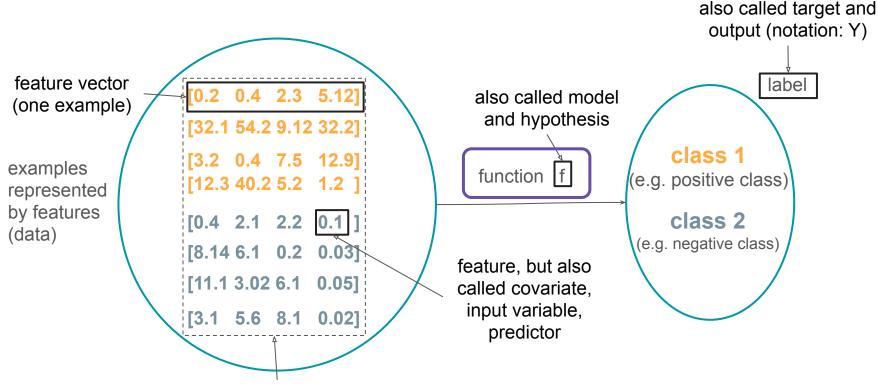








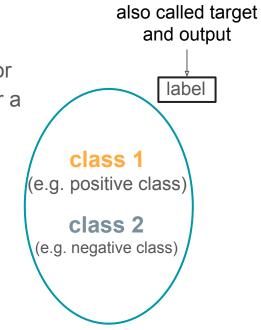
design matrix (notation: X)



design matrix (notation: X)

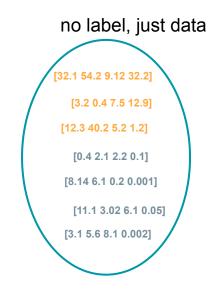
Types of problems in machine learning: what does the function f do

- 1. **Supervised**: for each example we know the label
 - Label can be a discrete value a class (e.g., a receptor is antigen-specific or not, the picture contains a dog or a cat): classification or
 - b. a continuous value (e.g., binding affinity, house price): **regression**



Types of problems in machine learning: what does the function f do

- 1. Supervised: classification and regression
- 2. Unsupervised:
 - a. the data we have has a lot of features, and we want to see if there is a structure in the data
 - b. there is no explicit label
 - c. example: there is a set of cells and we want to see if we can group them and see if there are new groups which could indicate new cell types



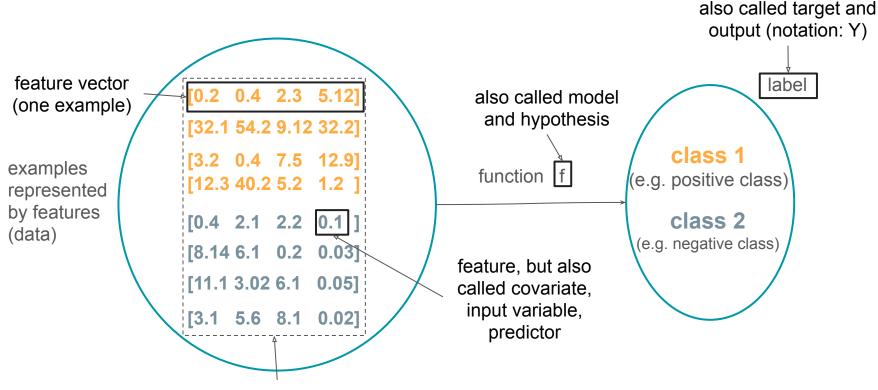
Types of problems in machine learning: what does the function f do

- 1. Supervised: classification and regression
- 2. Unsupervised
- 3. Reinforcement learning:
 - a. dataset is not fixed, the program interacts with environment
 - used when choosing a sequence of actions: we don't know the label - don't know the optimal sequence of actions, but we know how good an action is
 - c. example: discover optimal dosing policy for a medication

Types of problems in machine learning: what does the function f do

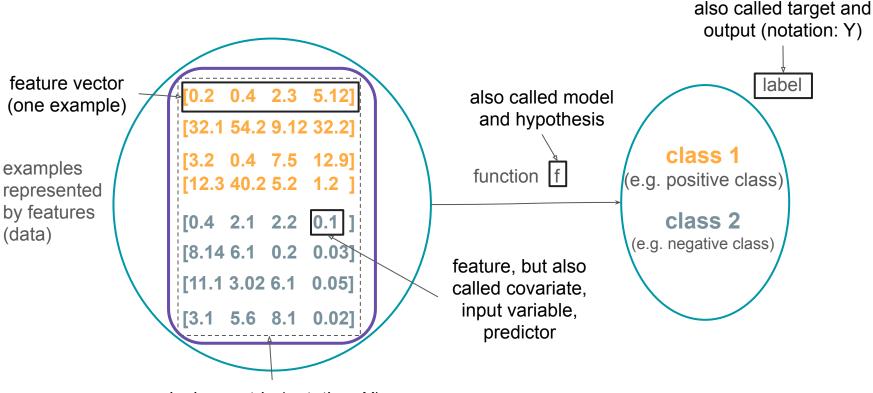
- 1. Supervised: classification and regression
- 2. Unsupervised
- 3. Reinforcement learning

Machine learning as a function approximation task



design matrix (notation: X)

Machine learning as a function approximation task



design matrix (notation: X)

- □ Data generation process produces the data (data generation process results in a probability distribution p_{data})
- We assume:
 - Examples in each dataset are independent of each other
 - When we want to use the machine learning model on some new data to predict a label: these new data come from the same data generation process (same probability distribution)

- Data generation process produces the data (data generation process results in a probability distribution p_{data})
 - We assume:

Examples in each dataset are independent of each other

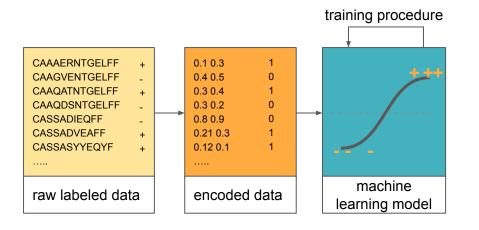
When we want to use the machine learning model on some new data to predict a label: these new data come from the same data generation process (same probability distribution)

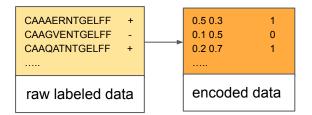
- Data generation process produces the data
 (data generation process results in a probability distribution p_{data})
 - We assume:
 - Examples in each dataset are independent of each other
 - When we want to use the machine learning model on some new data to predict a label: these new data come from the same data generation process (same probability distribution)

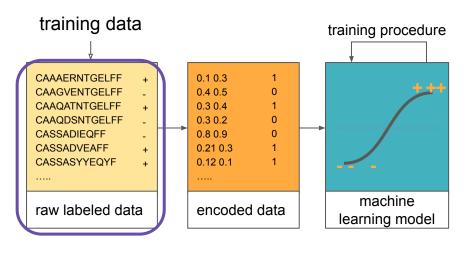
i.i.d. assumption examples are independent and identically distributed

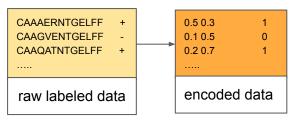
- Data generation process produces the data
 (data generation process results in a probability distribution p_{data})
- We assume:
 - Examples in each dataset are independent of each other
 - When we want to use the machine learning model on some new data to predict a label: these new data come from the same data generation process (same probability distribution)
- With these assumptions satisfied (or approximately satisfied), we choose the data representation and estimate the function

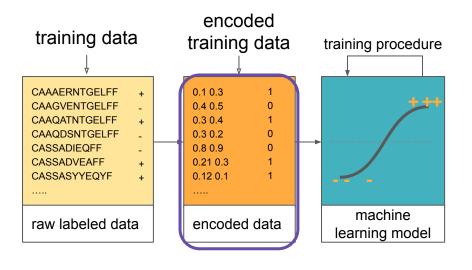
i.i.d. assumption examples are independent and identically distributed

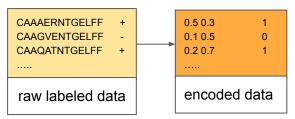


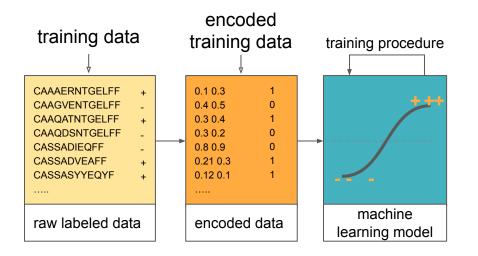


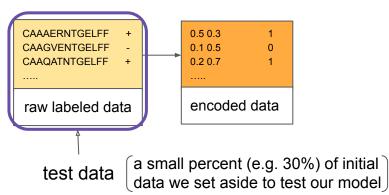


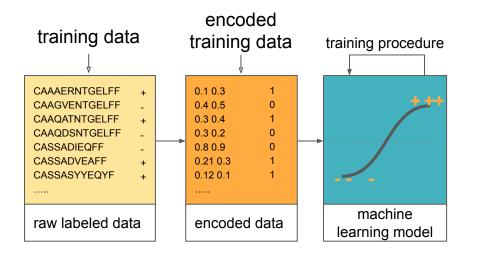


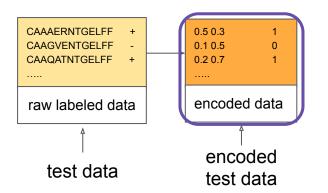


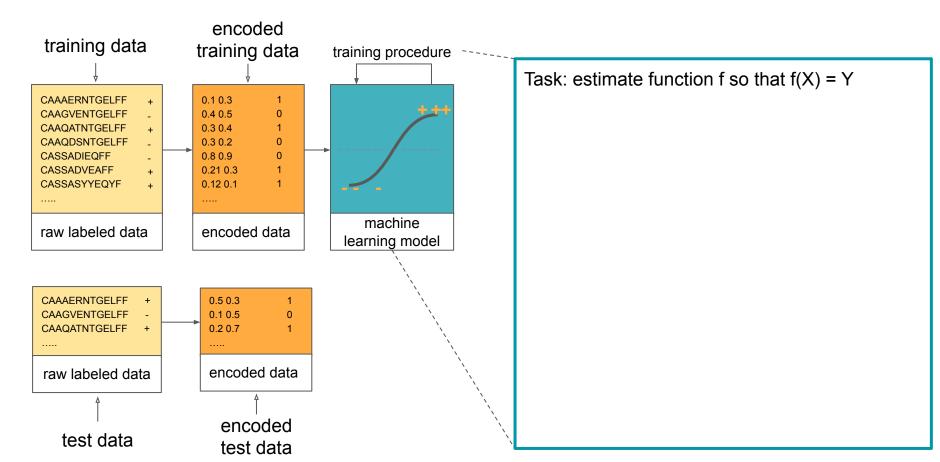


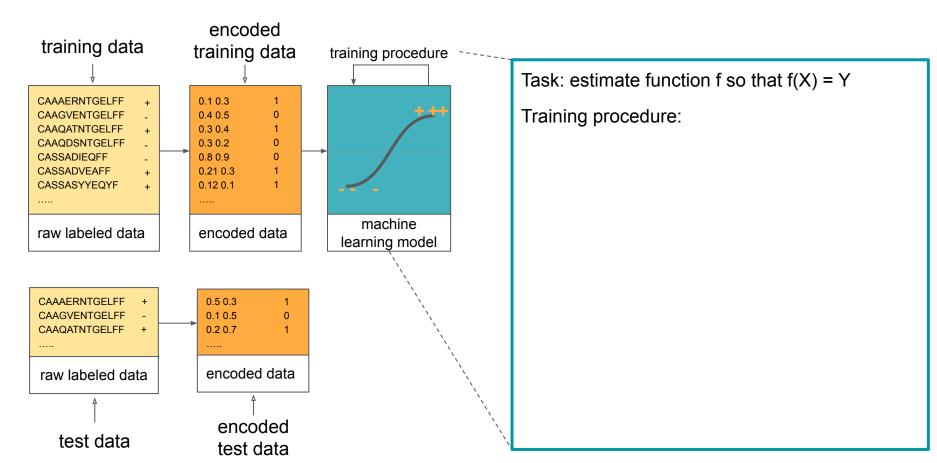


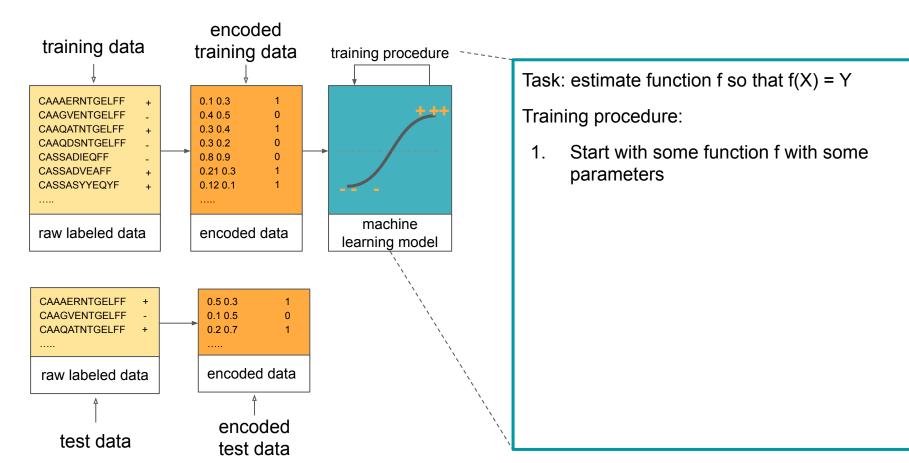


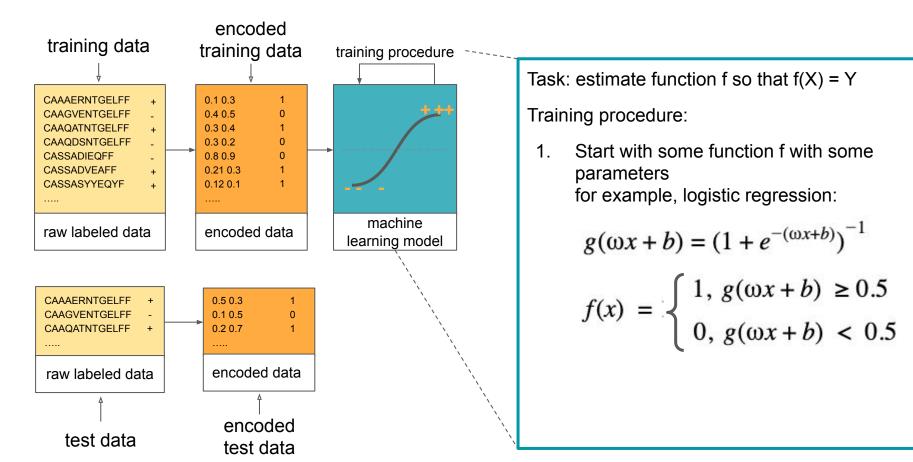


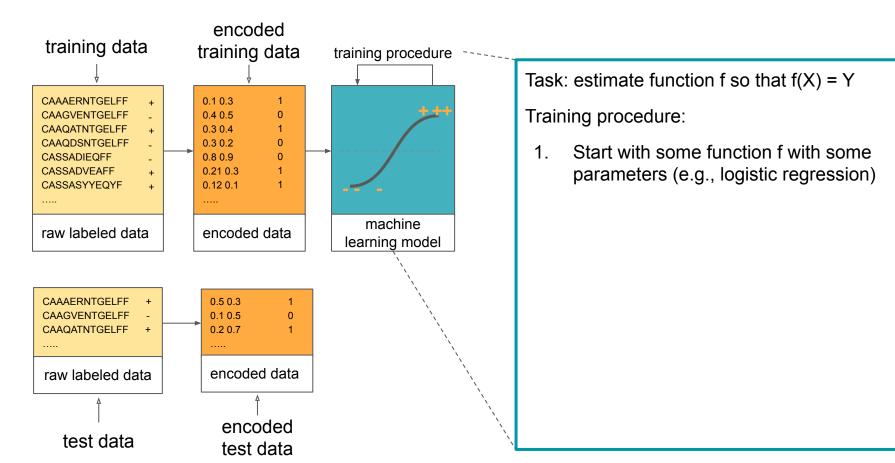


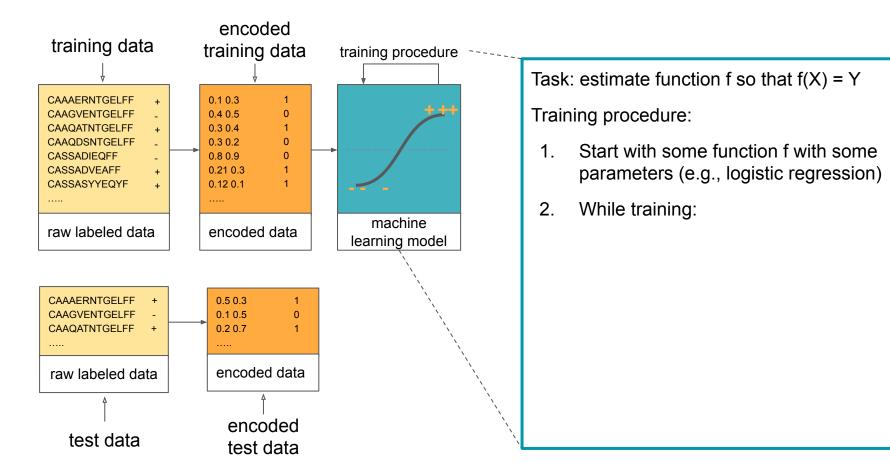


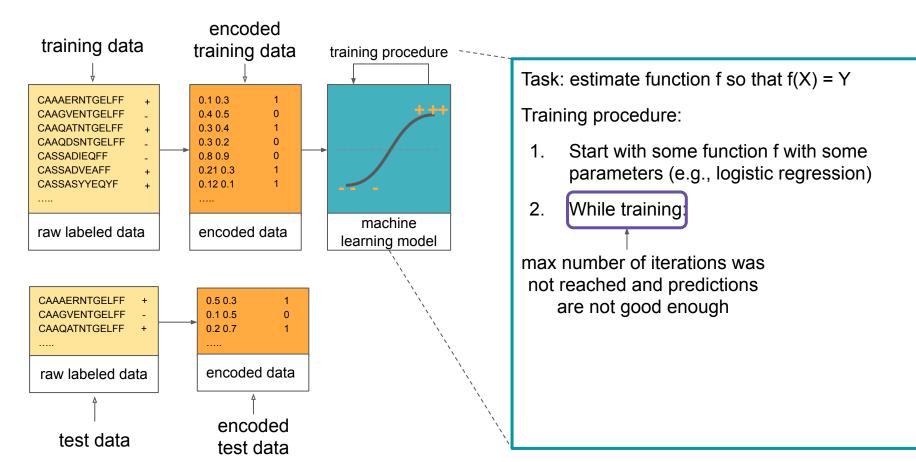


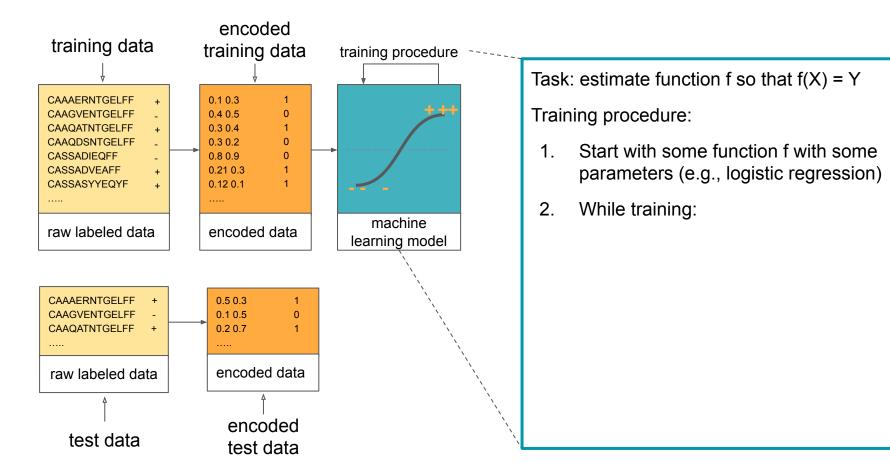


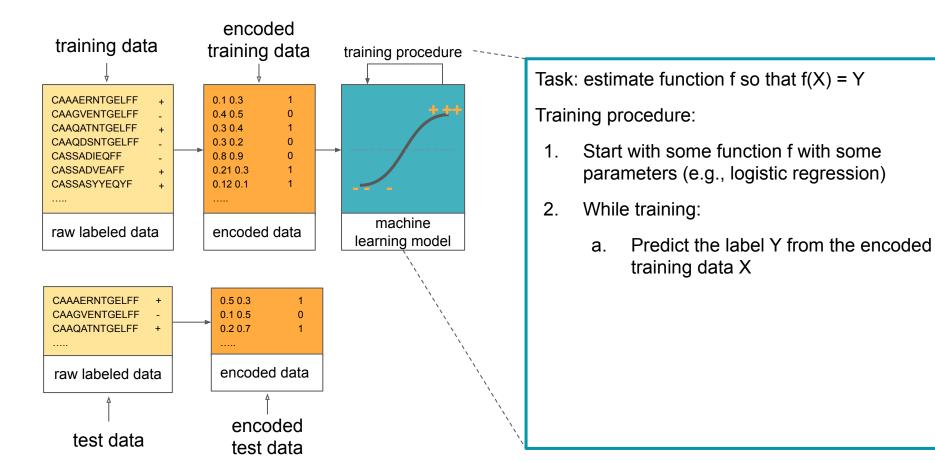


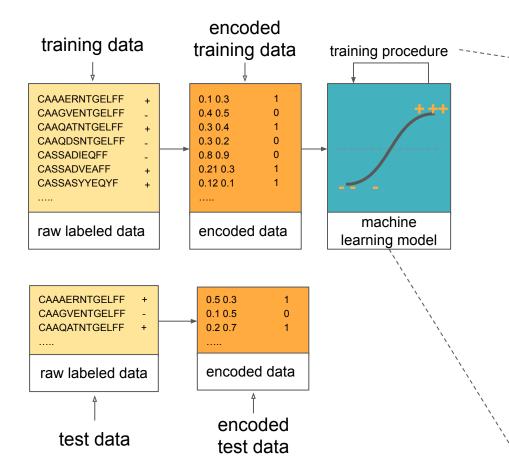






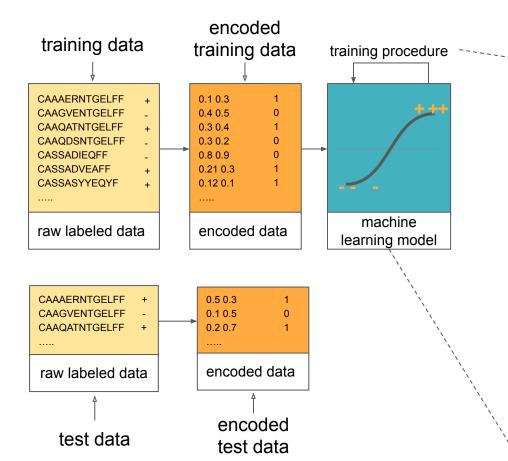






Task: estimate function f so that f(X) = YTraining procedure:

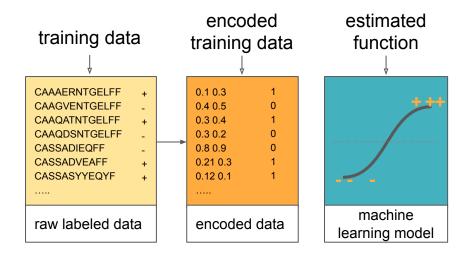
- 1. Start with some function f with some parameters (e.g., logistic regression)
- 2. While training:
 - a. Predict the label Y from the encoded training data X
 - Compute the cost function: how much predictions deviate from the label Y

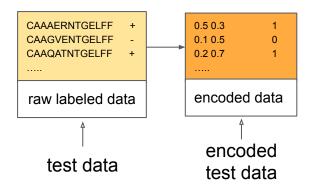


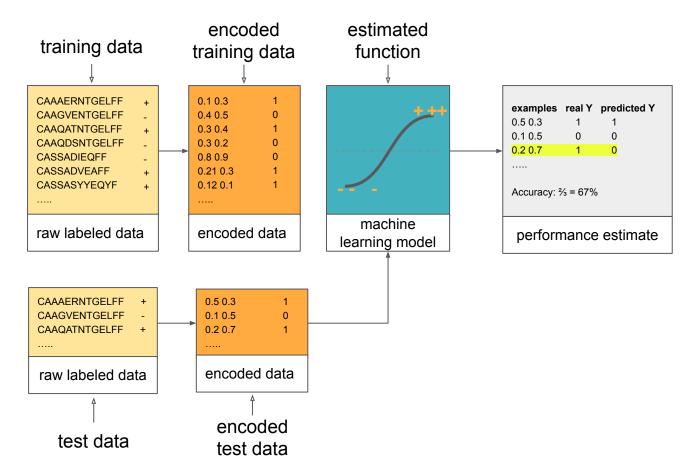
Task: estimate function f so that f(X) = Y

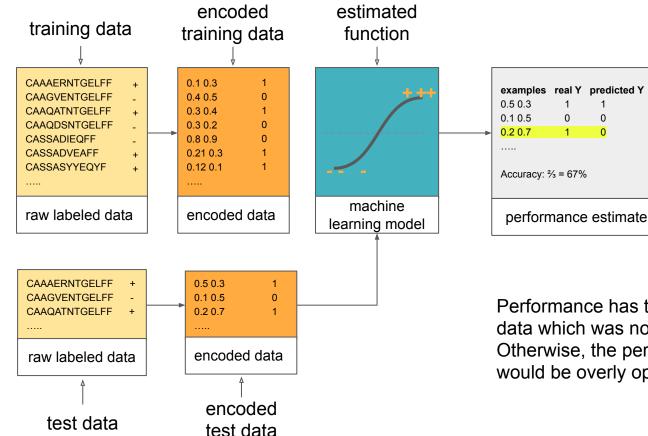
Training procedure:

- 1. Start with some function f with some parameters (e.g., logistic regression)
- 2. While training:
 - a. Predict the label Y from the encoded training data X
 - b. Compute the cost function: how much predictions deviate from the label Y
 - c. Update the parameters of the function f to reduce the cost function so that we get better predictions







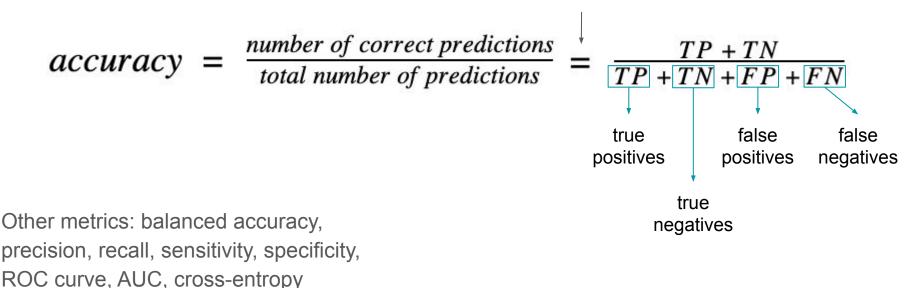


Performance has to be estimated on data which was not used during training. Otherwise, the performance estimate would be overly optimistic.

Performance metrics - classification

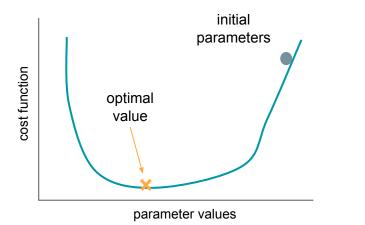
- Depends on the problem and the data
- □ Classification (label values come from a discrete set):

for binary classification, this equality holds:



Training the machine learning model

- □ We want to minimize the cost function
- □ For instance, we can use optimization algorithm called gradient descent:

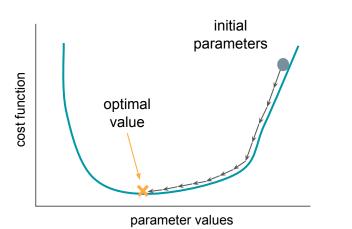


Repeat until optimal solution / max number of iterations:

- 1. Find derivative of the cost function w.r.t. each of the parameters of the model
- 2. Update each parameter incrementally using the cost function as a starting point for the update computation

Training the machine learning model

- □ We want to minimize the cost function
- □ For instance, we can use optimization algorithm called gradient descent

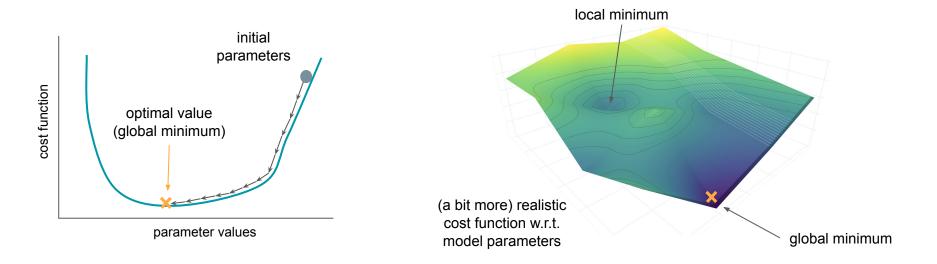


Repeat until optimal solution / max number of iterations:

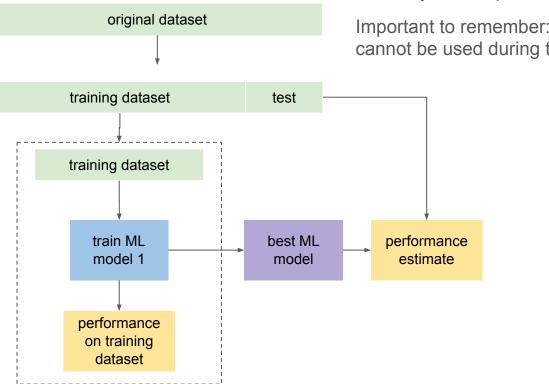
- 1. Find derivative of the cost function w.r.t. each of the parameters of the model
- 2. Update each parameter incrementally using the cost function as a starting point for the update computation

Training the machine learning model

- □ We want to minimize the cost function
- For instance, we can use optimization algorithm called gradient descent



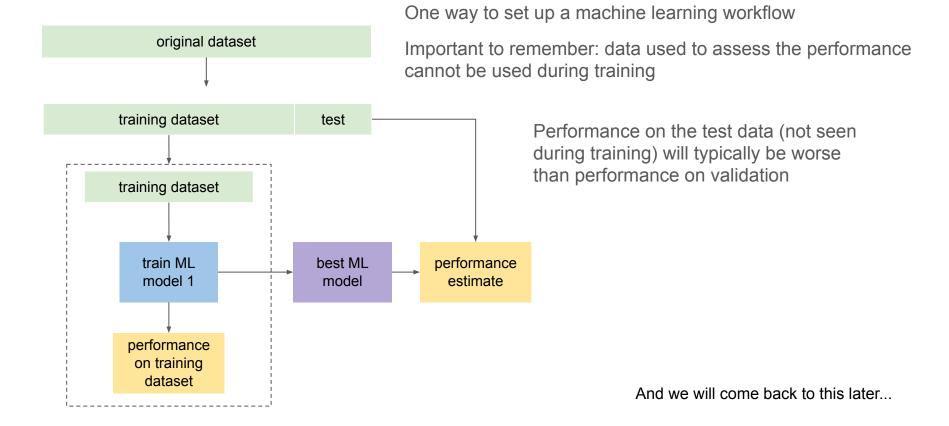
Machine learning workflow



One way to set up a machine learning workflow

Important to remember: data used to assess the performance cannot be used during training

Machine learning workflow

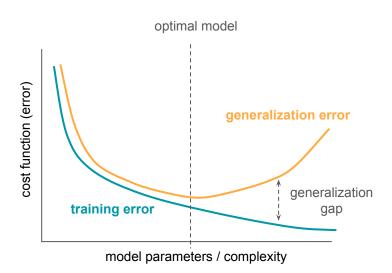


Generalization in ML

- Generalization is the ability of an ML model to perform well on previously unseen data
- We use error on the test set as an estimate of generalization error
- Generalization error is the expected error on new data

We want a model which will have:

- Small error on the training set
- Small gap between training set error and test set error



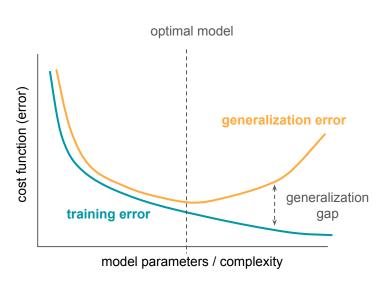
Generalization in ML

- Generalization is the ability of an ML model to perform well on previously unseen data
- We use error on the test set as an estimate of generalization error
- Generalization error is the expected error on new data

We want a model which will have:

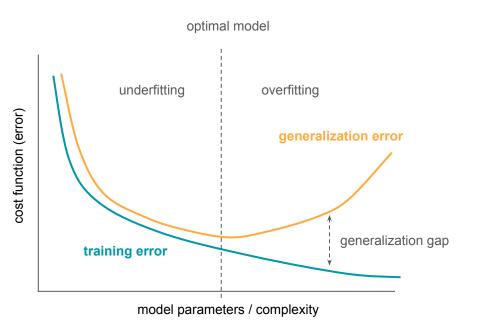
- Small error on the training set
- Small gap between training set error and test set error

Remember that we can talk about generalization like this only if the i.i.d. assumption at least approximately holds.



Overfitting and underfitting

- Underfitting: the model was not able to learn from the training data - it had high training error
- Overfitting: the generalization gap is too large because the model fit the training data too well but failed to extract patterns which would enable good performance on the new (test) data



References

Goodfellow IJ, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. https://mitpress.mit.edu/books/deep-learning

Mitchell T. Machine Learning. McGraw Hill; 1997. http://www.cs.cmu.edu/~tom/mlbook.html

UiO **Universitetet i Oslo**

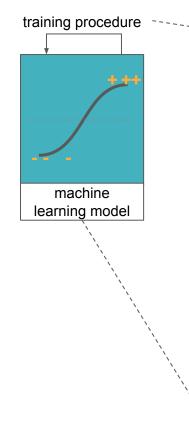
Part 3: ML Models and Algorithms

Machine learning in computational biology - outline

- Introduction to machine learning:
 - What is machine learning, types of problems, assumptions, workflow, generalization
- Machine learning models and algorithms:
 - Discriminative vs generative models, supervised models (logistic and linear regression, kNN, neural networks), unsupervised models (dimensionality reduction, clustering)
- Data representation:
 - Considerations and examples, one-hot encoding, feature engineering, representation learning
- Model comparison and uncertainty:
 - Model assessment, model selection, uncertainty, cross-validation
- Transparency and reproducibility

ML models

We mentioned logistic regression before - a simple model for binary classification



Task: estimate function f so that f(X) = Y
Training procedure:
1. Start with some function f with some parameters for example, logistic regression:

 $g(\omega x + b) = (1 + e^{-(\omega x + b)})^{-1}$

$$f(x) = \begin{cases} 1, \ g(\omega x + b) \ge 0.5 \\ 0, \ g(\omega x + b) < 0.5 \end{cases}$$

Some terminology regarding ML models and algorithms

- □ **Learning algorithm**: a function that, given a set of examples and their labels, constructs a model, e.g., logistic regression
- Model: a function which was fit to the data using the learning algorithm, e.g., logistic regression with specific coefficients

Dietterich 1998

Usually model and learning algorithm are used interchangeably but they mean slightly different things

Capacity of the model

A model's capacity is its ability to fit a wide variety of functions, for instance:
 linear regression:

 $\hat{y} = b + \omega x$

polynomial regression:

$$\hat{y} = b + \omega_1 x + \omega_2 x^2$$

Capacity of the model

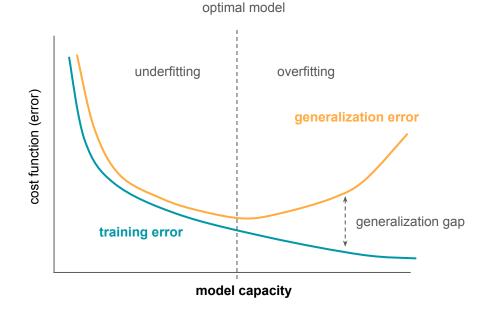
A model's capacity is its ability to fit a wide variety of functions, for instance:

linear regression:

 $\hat{y} = b + \omega x$

polynomial regression:

 $\hat{y} = b + \omega_1 x + \omega_2 x^2$

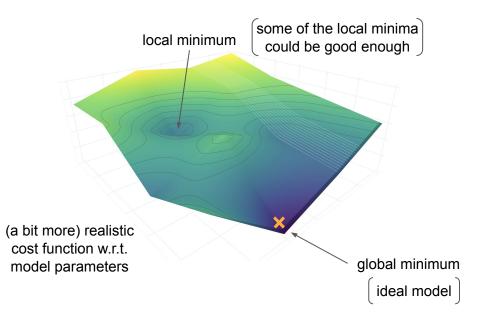


Searching through a hypothesis space using optimization algorithms

Fitting the parameters of the model is an optimization problem (there are different optimization algorithms, but one example is **gradient descent**)

We can get stuck in local minima

If the performance is good enough, we can accept that "suboptimal" model



Regularization restricts what models can be learned

Regularization – restricting the values of parameters of the model that can be learned (e.g., based on our domain knowledge) so that the model performs better on new data

Typical forms of regularization (also called penalty):

L1 (lasso):

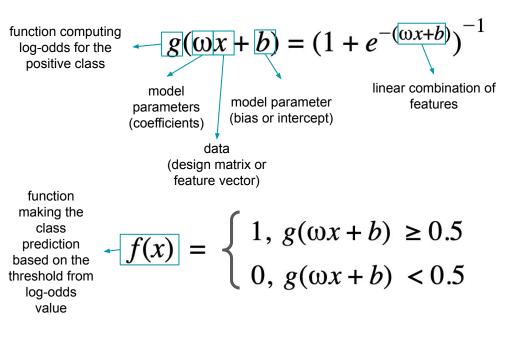
regularization (parameters) =
$$\sum_{i} | parameter_{i} |$$

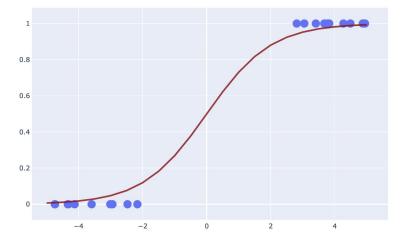
L2 (ridge):

regularization (parameters) =
$$\sum_{i} parameter_{i}^{2}$$

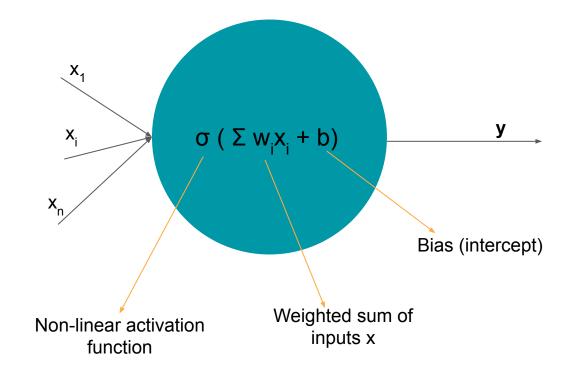
Logistic Regression

An algorithm for binary classification:



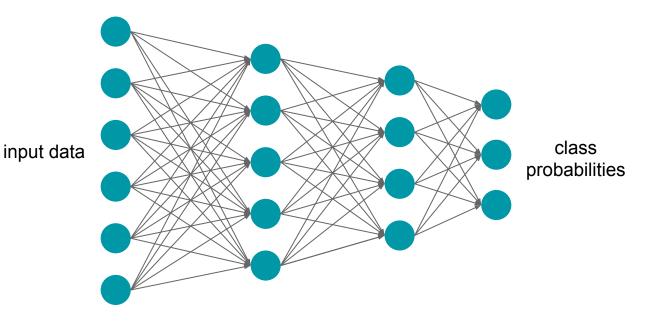


Single nodes in the neural network do something similar



Neural Networks

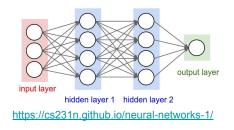
- Nodes in neural networks are organized into layers
- Number of nodes in the layer and number of layers are hyperparameters (not optimized during training, but instead set manually)
- Hierarchical structure makes them very powerful



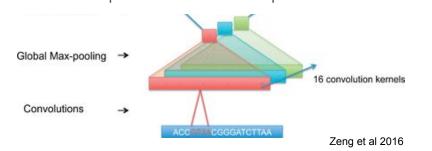
Fully connected neural network

Types of neural networks

 Fully connected networks: can approximate almost any function

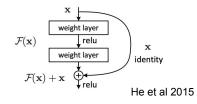


Convolutional neural networks: detect position-invariant local patterns



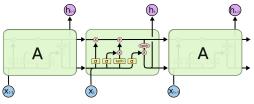
Residual networks:

can learn both simple (e.g. identity) and more complex functions



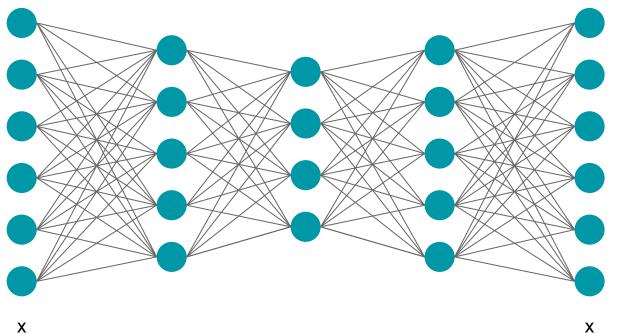
Recurrent neural networks:

can be Turing-complete, often used for long(er)-term dependencies in e.g., sequence data



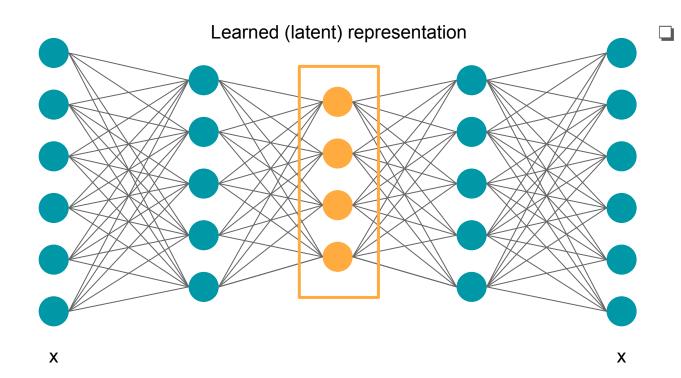
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unsupervised algorithm - autoencoder example



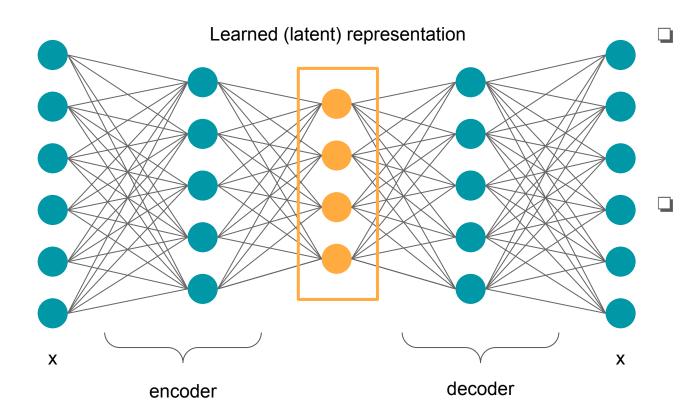
Autoencoder is a neural network trained to attempt to copy its input to its output

Unsupervised algorithm - autoencoder example



Autoencoder is a neural network trained to attempt to copy its input to its output while passing through a latent representation

Unsupervised algorithm - autoencoder example



Autoencoder is a neural network trained to attempt to copy its input to its output while passing through a latent representation

Learned representation can have useful properties: reduced dimensionality, easy to visualize, but there are other tasks as well

References

Dietterich TG. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. *Neural Comput.* 1998;10(7):1895–1923. doi:10.1162/089976698300017197

Goodfellow IJ, Bengio Y, Courville A. *Deep Learning*. MIT Press; 2016. <u>https://mitpress.mit.edu/books/deep-learning</u> (especially chapter 5 - Machine Learning Basics)

Killoran, Nathan, Leo J. Lee, Andrew Delong, David Duvenaud, and Brendan J. Frey. 'Generating and Designing DNA with Deep Generative Models'. *ArXiv:1712.06148* [*Cs, q-Bio, Stat*], 17 December 2017. <u>http://arxiv.org/abs/1712.06148</u>.

Zeng, Haoyang, Matthew D. Edwards, Ge Liu, and David K. Gifford. 'Convolutional Neural Network Architectures for Predicting DNA–Protein Binding'. *Bioinformatics* 32, no. 12 (15 June 2016): i121–27. <u>https://doi.org/10.1093/bioinformatics/btw255</u>.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 'Deep Residual Learning for Image Recognition'. *ArXiv:1512.03385 [Cs]*, 10 December 2015. <u>http://arxiv.org/abs/1512.03385</u>.

UiO **Universitetet i Oslo**

Part 4: Data Representation

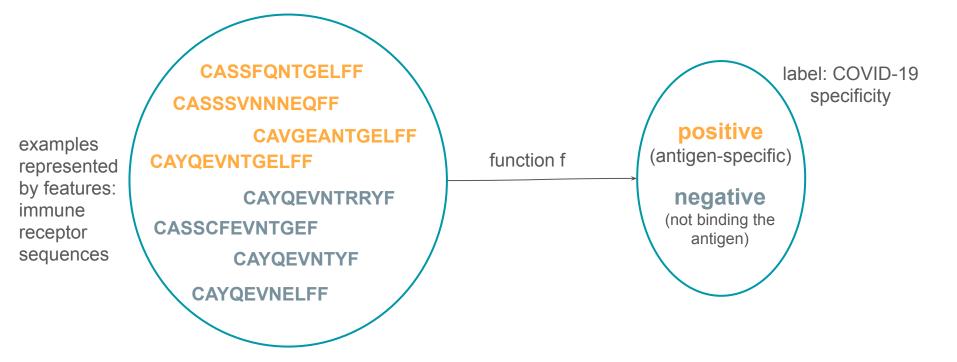
Machine learning in computational biology - outline

- Introduction to machine learning:
 - What is machine learning, types of problems, assumptions, workflow, generalization
- Machine learning models and algorithms:
 - Discriminative vs generative models, supervised models (logistic and linear regression, kNN, neural networks), unsupervised models (dimensionality reduction, clustering)

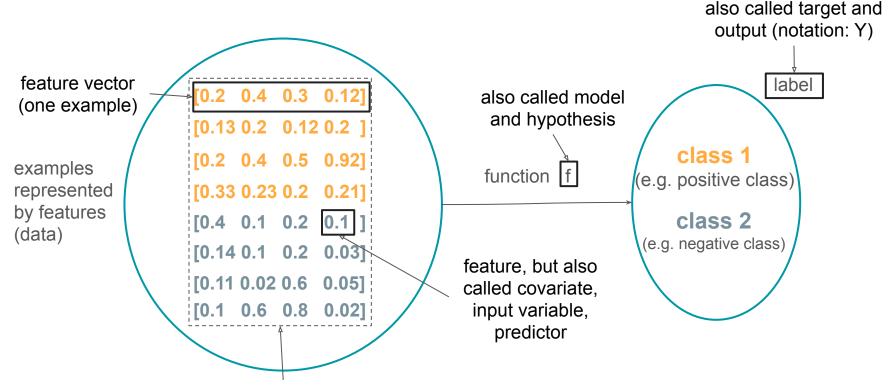
• Data representation:

- Considerations and examples, one-hot encoding, feature engineering, representation learning
- Model comparison and uncertainty:
 - Model assessment, model selection, uncertainty, cross-validation
- Transparency and reproducibility

We are given a set of sequences... but algorithms only understand numbers!



We can represent sequences by their physicochemical properties, for instance



design matrix (notation: X)

Some examples of data representation (encoding)

- One-hot encoding
- □ K-mer frequencies

Data representation heavily depends on data, so in different domains, there will be different representations:

When classifying images with classical approaches: number of edges, objects

When predicting the length of the trip: number of traffic lights, time of day

When predicting if an email is a spam or not: certain words, presence/absence of personal name

Some examples of data representation (encoding)

- One-hot encoding
- □ K-mer frequencies

We have to be careful how we choose features - we must not introduce information that should not be there!

Data representation heavily depends on data, so in different domains, there will be different representations:

When classifying images with classical approaches: number of edges, objects

When predicting the length of the trip: number of traffic lights, time of day

When predicting if an email is a spam or not: certain words, presence/absence of personal name

One-hot encoding

- A common way to represent categorical data where only one value can be chosen: rows represent the possible values
- Also called *dummy variables* in statistics

nucleotide sequence: AATGC Α Α G C 0 0 is it A 1 1 0 is it C 0 0 0 0 1 0 0 1 is it G 0 0 is it T 0 0 1 0 0

one-hot encoding

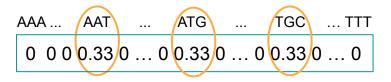
K-mer frequency

nucleotide sequence: AATGC $\longrightarrow AATGC$ AAT ATG TGC

- Often used for sequence representation
- k-mers are (optionally overlapping) subsequences of length k

present 3-mers: AAT, ATG, TGC

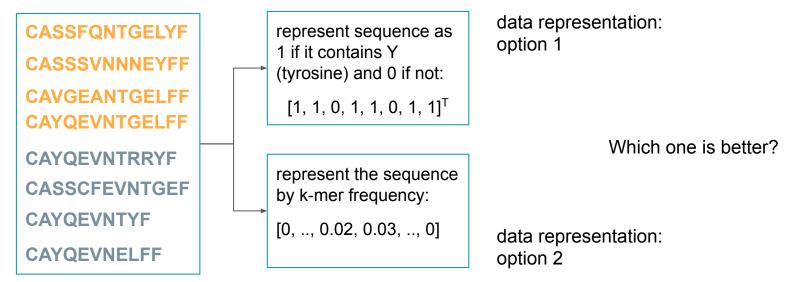
all possible 3-mers: AAA, AAC, AAG, AAT, ACA, ..., TTT (4³=64 combinations)



k-mer frequency encoding (k=3)

ML algorithm performance heavily depends on data representation

- Data representation refers to choosing and constructing features
- We don't always know it advance which features are the best for the problem: we have to know the domain:



raw data

Feature engineering & feature selection

□ Feature engineering: together with domain experts, ML researchers would discuss and derive features which they believe could be useful for the model

Example: for biological sequences, there are a few popular alternatives like k-mer frequencies and physicochemical properties

This way a lot of features could be constructed and the best ones would be selected as a part of fitting the model (feature selection)

Representation learning

Most often in context of neural networks: the many layers of the network learn a hierarchical, alternative representation of the (raw) data that was provided as input

> Convolutional Networks on Graphs for Learning Molecular Fingerprints

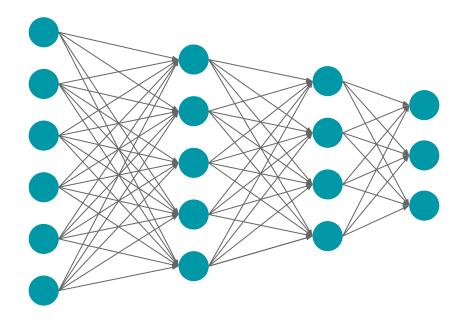
David Duvenaud', Dougal Maclaurin', Jorge Aguilera-Iparraguirre Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, Ryan P. Adams Harvard University Article | Published: 21 October 2019

Unified rational protein engineering with sequencebased deep representation learning

Ethan C. Alley, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi & George M. Church 🖂

Nature Methods 16, 1315–1322(2019) Cite this article

Representation learning - hidden layers in neural networks can be seen as different representations

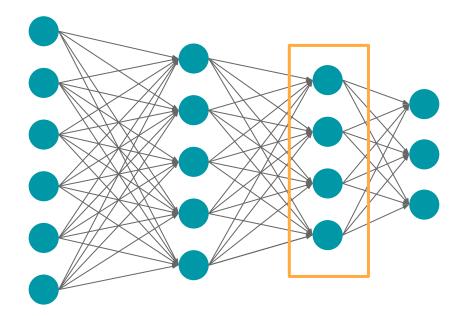


"A good representation is the one that makes the learning task easier."

Goodfellow et al. 2016

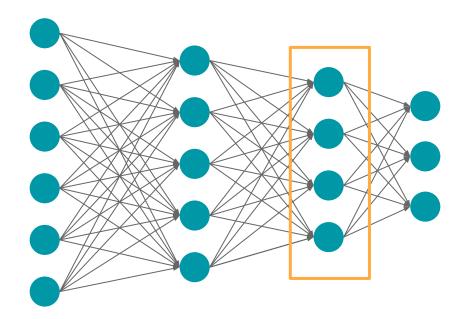
Deep neural network

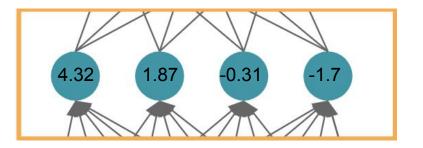
Representation learning - hidden layers in neural networks can be seen as different representations



Deep neural network

Representation learning - hidden layers in neural networks can be seen as different representations

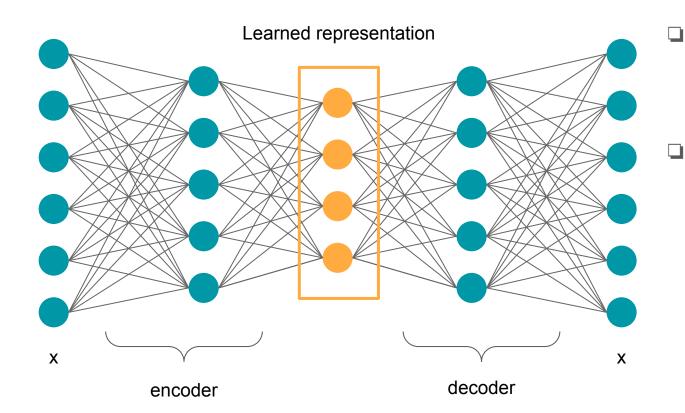




New data representation

Deep neural network

Representation learning with autoencoders



- Also used for dimensionality reduction and visualization
- Different types of autoencoders: denoising, sparse

UiO **Universitetet i Oslo**

Part 5: ML Model Comparison and Uncertainty

Machine learning in computational biology - outline

- Introduction to machine learning:
 - What is machine learning, types of problems, assumptions, workflow, generalization
- Machine learning models and algorithms:
 - Discriminative vs generative models, supervised models (logistic and linear regression, kNN, neural networks), unsupervised models (dimensionality reduction, clustering)
- Data representation:
 - Considerations and examples, one-hot encoding, feature engineering, representation learning
- Model comparison and uncertainty:
 - Model assessment, model selection, uncertainty, cross-validation
- Transparency and reproducibility

Model selection and model assessment

In a typical workflow, we perform two tasks:

Model selection: estimating the performance of different models in order to choose the best one

Model assessment: having chosen the final model, estimating its prediction error (generalization error) on new data

Model selection and model assessment

In a typical workflow, we perform two tasks:

Model selection: estimating the performance of different models in order to choose the best one

different learning algorithms or same learning algorithms, but different hyperparameters (e.g., different number of layers in a neural network)

Model assessment: having chosen the final model, estimating its prediction error (generalization error) on new data

Evaluation of an ML algorithm

- To do model selection (and model assessment) we need to know how to do model evaluation
- A suitable cost function has to be chosen

Evaluation of a ML algorithm

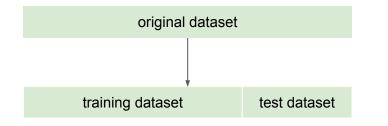
Two ML algorithms are different if and only if their percentage of correct classifications would be different on average when trained on a training set of a given fixed size and tested on all data points in the population

Dietterich 1998

Of course we cannot test on the entire population, but we should be aware that the difference we see in one particular result might not be the true difference between algorithms

Evaluation of an ML algorithm: random holdout test set

The simplest scenario: split the dataset to train/test dataset

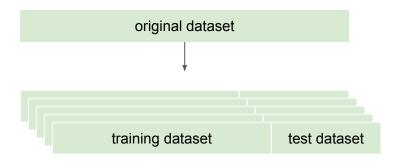


Test dataset is typically 25-30% of the original dataset, but in different applications, these numbers vary from 10 to 50%

Estimate performance of the algorithm on the test set

Evaluation of a ML algorithm: random holdout test sets

A bit more robust scenario: split the dataset randomly into multiple train/test datasets

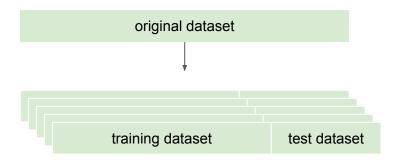


Test dataset is typically 25-30% of the original dataset.

Estimate performance of the algorithm as the average of the performances on test sets

Evaluation of a ML algorithm: random holdout test sets

A bit more robust scenario: split the dataset randomly into multiple train/test datasets

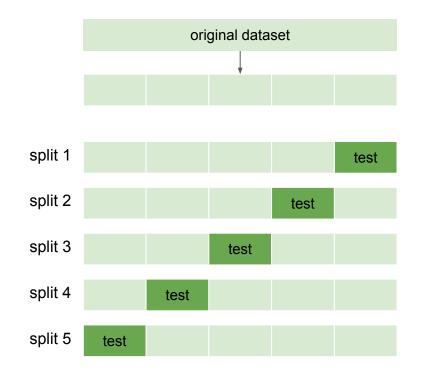


Test dataset is typically 25-30% of the original dataset.

- Estimate performance of the algorithm as the average of the performances on test sets
- The same examples could be in multiple test sets: biased estimate of the performance!

K-fold cross validation

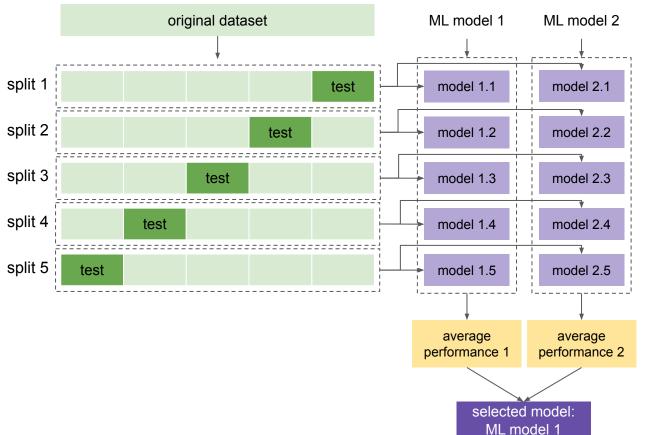
K-fold cross validation (CV) refers to splitting the data into k training and test set pairs so that each example is once a part of the test set



- The model is trained and evaluated on each train/test set pair
- The estimated performance is the obtained as average over all test set performances
- Typical values of k: 5, 10
- Leave-one-out CV

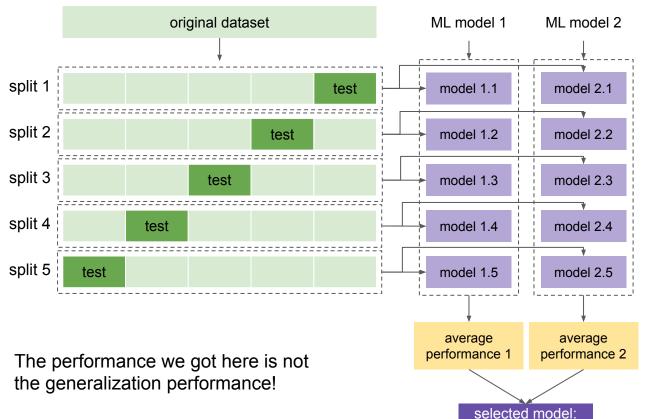
How to do model selection

- Split the original dataset to train/test dataset per one of the previous strategies (e.g., 5-fold CV)
- 2. For each model compute the performance as the average of performances on test sets (as described in the previous slide)
- Select the model with best average performance



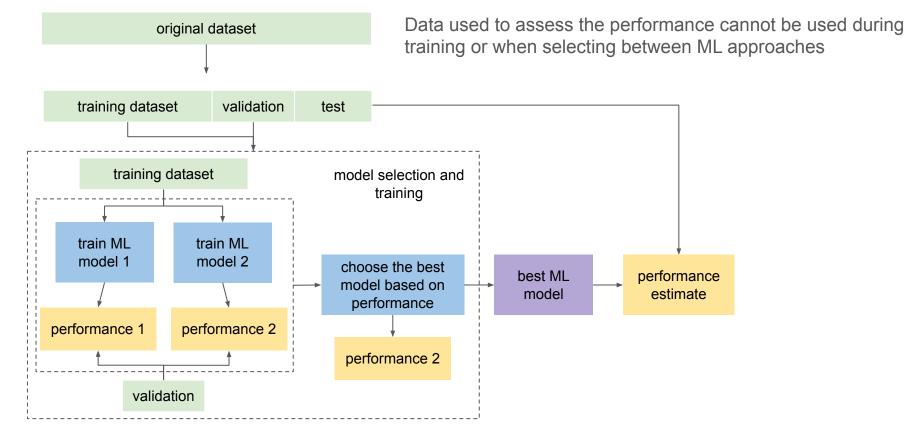
How to do model selection

- Split the original dataset to train/test dataset per one of the previous strategies (e.g., 5-fold CV)
- 2. For each model compute the performance as the average of performances on test sets (as described in the previous slide)
- Select the model with best average performance



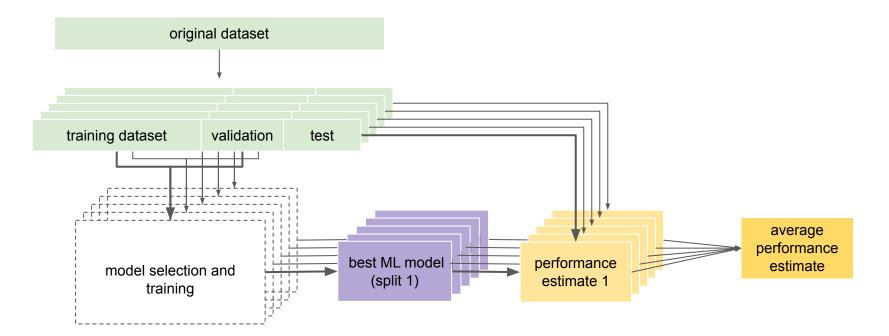
ML model 1

Model assessment uses a separate test set not used during model selection



Model assessment with multiple test sets: a more robust estimate

□ We can employ all the same techniques (e.g., CV) to split the data, do model selection as described before and use separate test sets to estimate generalization performance



Recommendations for ML in biology

DOME: recommendations for supervised machine learning validation in biology

<u>Ian Walsh, Dmytro Fishman, Dario Garcia-Gasulla, Tiina Titma, Gianluca Pollastri, ELIXIR Machine</u> <u>Learning Focus Group, Jennifer Harrow</u> [⊡], <u>Fotis E. Psomopoulos</u> [⊡] & <u>Silvio C. E. Tosatto</u> [⊡]

Nature Methods 18, 1122–1127 (2021) Cite this article

Table 1 | Supervised ML in biology: concerns, the consequences they impart and recommendations

Broad topic	Be on the lookout for	Consequences	Recommendation(s)
Data	 Inadequate data size & quality Inappropriate partitioning, dependence between train and test data Class imbalance No access to data 	 Data not representative of domain application Unreliable or biased performance evaluation Cannot check data credibility 	 Use independent optimization (training) and evaluation (testing) sets. This is especially important for meta algorithms, where independence of multiple training sets must be shown to be independent of the evaluation (testing) sets. Release data, preferably using appropriate long-term repositories, and include exact splits. Offer sufficient evidence of data size & distribution being representative of the domain.
Optimization	 Overfitting, underfitting and illegal parameter tuning Imprecise parameters and protocols given 	 Reported performance is too optimistic or too pessimistic The model models noise or misses relevant relationships Results are not reproducible 	 Clarify that evaluation sets were not used for feature selection, preprocessing steps or parameter tuning. Report indicators on training and testing data that can aid in assessing the possibility of under- or overfitting; for example, train vs. test error. Release definitions of all algorithmic hyperparameters, regularization protocols, parameters and optimization protocol. For neural networks, release definitions of training and learning curves. Include explicit model validation techniques, such as N-fold cross-validation.
Model	 Unclear if black box or interpretable model No access to resulting source code, trained models & data Execution time impractical 	 An interpretable model shows no explainable behavior Cannot cross compare methods & reproducibility, or check data credibility Model takes too much time to produce results 	 Describe the choice of black box or interpretable model. If interpretable, show examples of interpretable output. Release documented source code + models + executable + user interface/webserver + software containers. Report execution time averaged across many repeats. If computationally tough, compare to similar methods.
Evaluation	 Performance measures inadequate No comparisons to baselines or other methods Highly variable performance 	 Biased performance measures reported The method is falsely claimed as state-of-the-art Unpredictable performance in production 	 Compare with public methods & simple models (baselines). Adopt community-validated measures and benchmark datasets for evaluation. Compare related methods and alternatives on the same dataset. Evaluate performance on a final independent held-out set. Use confidence intervals/error intervals and statistical tests to gauge prediction robustness.

Key recommendations are bolded

References

Hastie T, Tibshirani R, Friedman J. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition*. 2nd ed. Springer-Verlag; 2009. doi:10.1007/978-0-387-84858-7

Dietterich TG. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. *Neural Comput.* 1998;10(7):1895–1923. doi:10.1162/089976698300017197

Goodfellow IJ, Bengio Y, Courville A. Deep Learning. MIT Press; 2016. <u>https://mitpress.mit.edu/books/deep-learning</u>

Walsh, I., Fishman, D., Garcia-Gasulla, D. *et al.* DOME: recommendations for supervised machine learning validation in biology. *Nat Methods* 18, 1122–1127 (2021). <u>https://doi.org/10.1038/s41592-021-01205-4</u>

UiO **Universitetet i Oslo**

Part 6: Transparency and Reproducibility

Machine learning in computational biology - outline

- Introduction to machine learning:
 - What is machine learning, types of problems, assumptions, workflow, generalization
- Machine learning models and algorithms:
 - Discriminative vs generative models, supervised models (logistic and linear regression, kNN, neural networks), unsupervised models (dimensionality reduction, clustering)
- Data representation:
 - Considerations and examples, one-hot encoding, feature engineering, representation learning
- Model comparison and uncertainty:
 - Model assessment, model selection, uncertainty, cross-validation
- Transparency and reproducibility

Transparency & interpretability are crucial for ML

□ "**Transparency** refers to how easily a stakeholder can examine the model and understand, or explain, how the model operates when combining the inputs to produce output, regardless how accurate the model is".

Wainberg et al. 2018

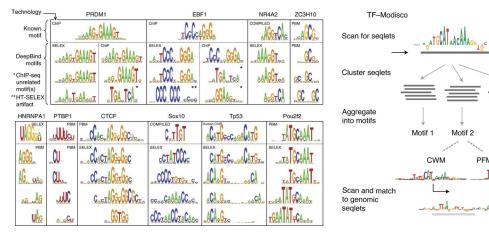
- Transparency would enable experts to check the model prediction and use it or check it more
- Interpretability: "understanding the patterns in the data may be just as important as fitting the data"

Ching et al. 2018

Interpretability of neural networks

Some techniques:

- Visualizing filters in (the first layers of) CNNs
- Clustering high contribution regions to derive motifs
- Backpropagating w.r.t. input data (saliency maps)
- Visualizing class activation maps



Motif 3

Match

PFM

Simonyan et al. 2014

Selvaraju et al. 2017

Alipanahi et al. 2015

Avsec et al 2021

Reproducibility in ML

Reproducibility: "the provision of enough detail about study procedures and data so the same procedures could be exactly repeated"

Goodman et al. 2016

Achieving reproducibility:

- □ Keep track how each result is produced
- Record all intermediate results [in standardized formats]
- General Store raw data behind all plots
- Provide public access to scripts, runs and results
- Archive the exact versions of all external programs used
- Use version control

Reproducibility standards for machine learning in the life sciences

Benjamin J. Heil, Michael M. Hoffman, Florian Markowetz, Su-In Lee, Casey S. Greene 🖂 & Stephanie C. Hicks 🖂

Nature Methods 18, 1132–1135 (2021) Cite this article

	Bronze	Silver	Gold
Data published and downloadable		х	х
Models published and downloadable	x	х	x
Source code published and downloadable	x	х	x
Dependencies set up in a single command		х	х
Key analysis details recorded		х	х
Analysis components set to deterministic		x	x
Entire analysis reproducible with a single command			x

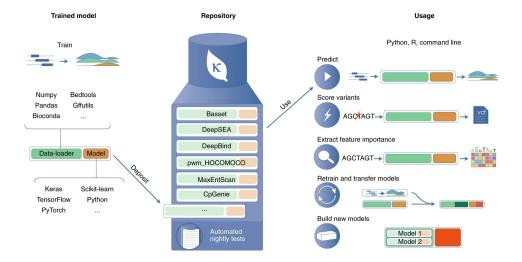
Reproducibility in ML

- The code and models should be publicly available (GitHub, Zenodo, or other services)
- Possible to inspect, validate, (re)use, and improve models

The Kipoi repository accelerates community exchange and reuse of predictive models for genomics

Žiga Avsec ⊠, Roman Kreuzhuber, Johnny Israeli, Nancy Xu, Jun Cheng, Avanti Shrikumar, Abhimanyu Banerjee, Daniel S. Kim, Thorsten Beier, Lara Urban, Anshul Kundaje ⊠, Oliver Stegle ⊠ & Julien Gagneur ⊠

Nature Biotechnology 37, 592–600 (2019) Cite this article



References

Lipton ZC. The Mythos of Model Interpretability. *arXiv:160603490 [cs, stat]*. Published online March 6, 2017. <u>http://arxiv.org/abs/1606.03490</u>

Alipanahi, B., Delong, A., Weirauch, M. *et al.* Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. *Nat Biotechnol* 33, 831–838 (2015). <u>https://doi.org/10.1038/nbt.3300</u>

Avsec, Ž., Weilert, M., Shrikumar, A. *et al.* Base-resolution models of transcription-factor binding reveal soft motif syntax. *Nat Genet* 53, 354–366 (2021). <u>https://doi.org/10.1038/s41588-021-00782-6</u>

Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman. 'Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps'. *ArXiv:1312.6034 [Cs]*, 19 April 2014. <u>http://arxiv.org/abs/1312.6034</u>.

Selvaraju, Ramprasaath R., Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. 'Grad-CAM:Visual Explanations from Deep Networks via Gradient-Based Localization'. In *2017 IEEE International Conference on Computer Vision (ICCV)*, 618–26, 2017. <u>https://doi.org/10.1109/ICCV.2017.74</u>.

Goodman SN, Fanelli D, Ioannidis JPA. What does research reproducibility mean? *Science Translational Medicine*. 2016;8(341):341ps12-341ps12. doi:<u>10.1126/scitranslmed.aaf5027</u>

Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten Simple Rules for Reproducible Computational Research. *PLOS Computational Biology*. 2013;9(10):e1003285. doi:<u>10.1371/journal.pcbi.1003285</u>

Heil, B.J., Hoffman, M.M., Markowetz, F. *et al.* Reproducibility standards for machine learning in the life sciences. *Nat Methods* 18, 1132–1135 (2021). <u>https://doi.org/10.1038/s41592-021-01256-7</u>

Avsec, Ž., Kreuzhuber, R., Israeli, J. *et al.* The Kipoi repository accelerates community exchange and reuse of predictive models for genomics. *Nat Biotechnol* 37, 592–600 (2019). <u>https://doi.org/10.1038/s41587-019-0140-0</u>