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Disclaimer

I am a machine learning researcher, not a biologist: 
you are the experts there!



Learning aims
❏ Key points should be the intuition and high-level understanding of what 

machine learning is, types of problems it can help solving

❏ Machine learning is not a black box: every choice we make has a meaning

❏ Overall understanding that there is a data representation component and a 
machine learning algorithm 

❏ High-level understanding of machine learning workflow, comparison and 
uncertainty related to it



Sequencing technologies provide data which can be 
examined for biological properties

Motifs and data from VDJdb (Bagaev et al. 2020)
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Sequencing technologies provide data which can be 
examined for biological properties

Motifs and data from VDJdb (Bagaev et al. 2020)

❏ One way to approach an 
analysis: make a position 
weight matrix showing 
product multinomial 
distribution of amino acids

❏ But what if we want to 
predict if a sequence is 
specific to a virus or not?



Machine learning is a powerful approach to 
discovering patterns in (biological) data
❏ A set of methods that 

allow for making 
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❏ Example: will the 
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or not? - we can fit a 
logistic regression model 
on receptor data and 
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new receptors
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ML and computational biology development timeline

Wainberg et al. 2018



A variety of research questions in computational 
biology can be tackled with machine learning
Transcription factor binding prediction:

Transcription factors are proteins which 
bind to certain sites in DNA and regulate 
transcription of genes

Given a set of DNA sequences for which 
we know if they will bind or not, how can we 
predict if a transcription factor will bind to a 
new DNA sequence?

Classification problem!

Leung et al. 2016



A variety of research questions in computational 
biology can be tackled with machine learning

Splicing: processing of precursor RNA that creates 
messenger RNA by removing non-coding regions 
(introns) and connects gene-coding regions (exons) 
together

Predicting how often exons will be included in the 
transcripts is a regression problem

Leung et al. 2016
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A variety of research questions in computational 
biology can be tackled with machine learning
Single-cell RNA-seq clustering for identification of new 
cell types:

A dimensionality reduction technique is applied to 
normalized count data

Clustering the data (using e.g., k-means algorithm) can 
reveal new cell types

new cell 
type
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principal component 1

principal component 1

clustering algorithm



A variety of research questions in computational 
biology can be tackled with machine learning
Example: antigen binding prediction

Immune receptors (proteins) bind to antigens 
(e.g., parts of viruses) to help eliminate them

Given a set of receptors known to bind a 
given antigen, can we predict for the new 
receptor if it will bind to the antigen?

Classification problem!

antigen

receptor

Akbar et al. 2019



A variety of research questions in computational 
biology can be tackled with machine learning

Example: protein structure prediction with AlphaFold



A variety of research questions in computational 
biology can be tackled with machine learning

Variant calling: finding genetic variants 
from sequence reads

From a pileup of the reference and read 
data around each candidate variant, ML 
models could determine the probabilities 
for each of the three diploid genotypes

G G A C G A T G C T A T C A T A T
G G A C G A T G C T G T C A T A T



A variety of research questions in computational 
biology can be tackled with machine learning



Computational biology poses unique challenges for 
machine learning

❏ Dimensionality & dataset size
❏ Signal and noise in the data
❏ Unknown ground truth and weakly labeled datasets
❏ Selection bias

Keep in the data generation process in mind!
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Machine learning in computational biology - outline
● Introduction to machine learning:

○ What is machine learning, types of problems, assumptions, workflow, generalization

● Machine learning models and algorithms:
○ Discriminative vs generative models, supervised models (logistic and linear regression, kNN, 

neural networks), unsupervised models (dimensionality reduction, clustering)

● Data representation:
○ Considerations and examples, one-hot encoding, feature engineering, representation learning

● Model comparison and uncertainty:
○ Model assessment, model selection, uncertainty, cross-validation

● Transparency and reproducibility
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What is machine learning?
“Machine learning refers to extracting patterns from raw data.”



What is machine learning?
“Machine learning refers to extracting patterns from raw data.”

“A computer program is said to learn from experience E with respect to some class 
of tasks T and performance measure P, if its performance at tasks in T, as 
measured by P, improves with experience E.”

Mitchell 1997



Machine learning as a function approximation task

function f
examples 
represented 
by features
(data)

labels

CAT

DOG



Machine learning as a function approximation task

function f
examples 
represented 
by features:
immune 
receptor 
sequences

label: COVID-19 
specificity

positive
(antigen-specific)

negative
(not binding the 

antigen)

CASSFQNTGELFF
CASSSVNNNEQFF

CAVGEANTGELFF
CAYQEVNTGELFF

CAYQEVNTRRYF
CASSCFEVNTGEF

CAYQEVNTYF

CAYQEVNELFF



Machine learning as a function approximation task

function   fexamples 
represented 
by features
(data)

label

class 1
(e.g. positive class)

class 2
(e.g. negative class)

[0.2 0.4 2.3 5.12]
[32.1 54.2 9.12 32.2]

[3.2 0.4 7.5 12.9]
[12.3 40.2 5.2 1.2]
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[8.14 6.1 0.2 0.001]

[11.1 3.02 6.1 0.05]

[3.1 5.6 8.1 0.002]

feature vector 
(one example) also called model 

and hypothesis

also called target 
and output

feature, but also 
called covariate, 
input variable, 

predictor
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label

class 1
(e.g. positive class)

class 2
(e.g. negative class)

also called target 
and output1. Supervised: for each example we know the label

a. Label can be a discrete value - a class (e.g., a receptor 
is antigen-specific or not, the picture contains a dog or a 
cat): classification or

b. a continuous value (e.g., binding affinity, house price): 
regression

Types of problems in machine learning: what does 
the function f do



Types of problems in machine learning: what does 
the function f do
1. Supervised: classification and regression

2. Unsupervised: 

a. the data we have has a lot of features, and we want to 
see if there is a structure in the data 

b. there is no explicit label

c. example: there is a set of cells and we want to see if we 
can group them and see if there are new groups which 
could indicate new cell types

no label, just data

[32.1 54.2 9.12 32.2]

[3.2 0.4 7.5 12.9]

[12.3 40.2 5.2 1.2]

[0.4 2.1 2.2 0.1]

[8.14 6.1 0.2 0.001]

[11.1 3.02 6.1 0.05]

[3.1 5.6 8.1 0.002]



1. Supervised: classification and regression

2. Unsupervised

3. Reinforcement learning: 

a. dataset is not fixed, the program interacts with 
environment 

b. used when choosing a sequence of actions: we don’t 
know the label - don’t know the optimal sequence of 
actions, but we know how good an action is 

c. example: discover optimal dosing policy for a medication

Types of problems in machine learning: what does 
the function f do
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❏ Data generation process produces the data 
(data generation process results in a probability distribution pdata)

❏ We assume:

❏ Examples in each dataset are independent of each other

❏ When we want to use the machine learning model on some new 
data to predict a label: these new data come from the same data 
generation  process (same probability distribution)

❏ With these assumptions satisfied (or approximately 
satisfied), we choose the data representation and 
estimate the function

What do we assume about the data?

i.i.d. 
assumption

examples are 
independent 

and identically 
distributed
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a small percent (e.g. 30%) of initial 
data we set aside to test our model

Estimating the function (training procedure)
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Task: estimate function f so that f(X) = Y

Training procedure:
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2. While training:
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Task: estimate function f so that f(X) = Y

Training procedure:

1. Start with some function f with some 
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2. While training:

a. Predict the label Y from the encoded 
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b. Compute the cost function: how 
much predictions deviate from the 
label Y
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Task: estimate function f so that f(X) = Y

Training procedure:

1. Start with some function f with some 
parameters (e.g., logistic regression)

2. While training:

a. Predict the label Y from the encoded 
training data X

b. Compute the cost function: how 
much predictions deviate from the 
label Y

c. Update the parameters of the 
function f to reduce the cost function 
so that we get better predictions
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Accuracy: ⅔ = 67%
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raw labeled data encoded data machine 
learning model
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…..

raw labeled data

0.5 0.3                 1     
0.1 0.5                 0
0.2 0.7                 1
…..

encoded data

training data

test data

encoded 
training data

encoded 
test data

estimated 
function

performance estimate

examples   real Y   predicted Y
0.5 0.3            1           1
0.1 0.5            0           0
0.2 0.7            1           0     
…..

Accuracy: ⅔ = 67%

Performance has to be estimated on 
data which was not used during training.
Otherwise, the performance estimate 
would be overly optimistic.



❏ Depends on the problem and the data
❏ Classification (label values come from a discrete set):

Performance metrics - classification

for binary classification, this equality holds:

true 
positives

true 
negatives

false 
positives

false 
negatives

Other metrics: balanced accuracy,
precision, recall, sensitivity, specificity,
ROC curve, AUC, cross-entropy



Training the machine learning model
❏ We want to minimize the cost function

❏ For instance, we can use optimization algorithm called gradient descent:

co
st

 fu
nc

tio
n

parameter values

initial 
parameters

optimal 
value

Repeat until optimal solution / max number of iterations:

1. Find derivative of the cost function w.r.t. each of the 
parameters of the model

2. Update each parameter incrementally using the cost 
function as a starting point for the update 
computation



Training the machine learning model
❏ We want to minimize the cost function

❏ For instance, we can use optimization algorithm called gradient descent

co
st

 fu
nc
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n

parameter values

initial 
parameters

Repeat until optimal solution / max number of 
iterations:

1. Find derivative of the cost function w.r.t. each 
of the parameters of the model

2. Update each parameter incrementally using 
the cost function as a starting point for the 
update computation

optimal 
value



Training the machine learning model
co

st
 fu

nc
tio

n

parameter values

initial 
parameters

local minimum

global minimum

(a bit more) realistic 
cost function w.r.t. 
model parameters

optimal value 
(global minimum)

❏ We want to minimize the cost function

❏ For instance, we can use optimization algorithm called gradient descent



Machine learning workflow

original dataset

training dataset test

training dataset

train ML 
model 1

best ML 
model

performance 
estimate

One way to set up a machine learning workflow

Important to remember: data used to assess the performance 
cannot be used during training

performance 
on training 

dataset



Machine learning workflow

original dataset

training dataset test

training dataset

train ML 
model 1

best ML 
model

performance 
estimate

One way to set up a machine learning workflow

Important to remember: data used to assess the performance 
cannot be used during training

performance 
on training 

dataset

Performance on the test data (not seen 
during training) will typically be worse 
than performance on validation 

And we will come back to this later...



Generalization in ML
❏ Generalization is the ability of an ML model 

to perform well on previously unseen data

❏ We use error on the test set as an estimate 
of generalization error 

❏ Generalization error is the expected error 
on new data

We want a model which will have:

❏ Small error on the training set 
❏ Small gap between training set error and 

test set error
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)

model parameters / complexity

optimal model

generalization error

training error
generalization 

gap



Generalization in ML
❏ Generalization is the ability of an ML model 

to perform well on previously unseen data

❏ We use error on the test set as an estimate 
of generalization error 

❏ Generalization error is the expected error 
on new data

We want a model which will have:

❏ Small error on the training set 
❏ Small gap between training set error and 

test set error

co
st

 fu
nc

tio
n 

(e
rr

or
)

model parameters / complexity

optimal model

generalization error

training error
generalization 

gap

Remember that we can talk about 
generalization like this only if the i.i.d. 
assumption at least approximately holds.



Overfitting and underfitting
❏ Underfitting: the model was 

not able to learn from the 
training data - it had high 
training error

❏ Overfitting: the generalization 
gap is too large because the 
model fit the training data too 
well but failed to extract 
patterns which would enable 
good performance on the new 
(test) data

co
st

 fu
nc

tio
n 

(e
rr

or
)

model parameters / complexity

optimal model

generalization error

training error
generalization gap

underfitting overfitting
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Part 3: ML Models and Algorithms



Machine learning in computational biology - outline
● Introduction to machine learning:

○ What is machine learning, types of problems, assumptions, workflow, generalization

● Machine learning models and algorithms:
○ Discriminative vs generative models, supervised models (logistic and linear regression, 

kNN, neural networks), unsupervised models (dimensionality reduction, clustering)

● Data representation:
○ Considerations and examples, one-hot encoding, feature engineering, representation learning

● Model comparison and uncertainty:
○ Model assessment, model selection, uncertainty, cross-validation

● Transparency and reproducibility



Task: estimate function f so that f(X) = Y

Training procedure:

1. Start with some function f with some 
parameters 
for example, logistic regression:

ML models

-

+ +

- -

+

machine 
learning model

training procedure
❏ We mentioned logistic 

regression before - a 
simple model for binary 
classification



Some terminology regarding ML models and 
algorithms
❏ Learning algorithm: a function that, given a set of examples and their labels, 

constructs a model, e.g., logistic regression

❏ Model: a function which was fit to the data using the learning algorithm, e.g., logistic 
regression with specific coefficients

Usually model and learning algorithm are used interchangeably but they mean slightly 
different things

Dietterich 1998



Capacity of the model
❏ A model’s capacity is its ability to fit a wide variety of functions, for instance:

linear regression:

polynomial regression:



Capacity of the model
❏ A model’s capacity is its ability to fit a wide variety of functions, for instance:

linear regression:

polynomial regression:

co
st

 fu
nc

tio
n 

(e
rr

or
)

model capacity

optimal model

generalization error

training error
generalization gap

underfitting overfitting



Searching through a hypothesis space using 
optimization algorithms

Fitting the parameters of the model is an 
optimization problem (there are different 
optimization algorithms, but one example 
is gradient descent)

We can get stuck in local minima

If the performance is good enough, we 
can accept that “suboptimal” model

local minimum

global minimum

(a bit more) realistic 
cost function w.r.t. 
model parameters

some of the local minima 
could be good enough

ideal model



Regularization restricts what models can be learned

Regularization – restricting the values of parameters of the model that can be 
learned (e.g., based on our domain knowledge) so that the model performs better 
on new data

Typical forms of regularization (also called penalty):

   L1 (lasso): 

   L2 (ridge):



Logistic Regression
❏ An algorithm for binary classification:

model 
parameters 

(coefficients)
model parameter 
(bias or intercept)

function computing 
log-odds for the 
positive class

linear combination of 
features

data 
(design matrix or 
feature vector)

function 
making the 

class 
prediction 

based on the 
threshold from 

log-odds 
value



Single nodes in the neural network do something 
similar

σ ( Σ wixi + b)

x1

yxi

xn

Non-linear activation 
function

Weighted sum of 
inputs x

Bias (intercept)



class 
probabilities

Neural Networks

Fully connected neural network

input data

❏ Nodes in neural 
networks are 
organized into layers

❏ Number of nodes in 
the layer and number 
of layers are 
hyperparameters (not 
optimized during 
training, but instead 
set manually)

❏ Hierarchical structure 
makes them very 
powerful



❏ Residual networks: 
can learn both simple (e.g. identity) and more complex 
functions

❏ Recurrent neural networks: 
can be Turing-complete, often used for long(er)-term 
dependencies in e.g., sequence data

Types of neural networks

❏ Fully connected networks: 
can approximate almost any function

❏ Convolutional neural networks: 
detect position-invariant local patterns

https://cs231n.github.io/neural-networks-1/ He et al 2015

https://colah.github.io/posts/2015-08-Understanding-LSTMs/Zeng et al 2016

https://cs231n.github.io/neural-networks-1/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/


Unsupervised algorithm - autoencoder example

x x

❏ Autoencoder is a 
neural network 
trained to attempt to 
copy its input to its 
output



Unsupervised algorithm - autoencoder example

x x

Learned (latent) representation ❏ Autoencoder is a 
neural network trained 
to attempt to copy its 
input to its output while 
passing through a 
latent representation



Unsupervised algorithm - autoencoder example

x x

❏ Autoencoder is a 
neural network trained 
to attempt to copy its 
input to its output while 
passing through a 
latent representation

❏ Learned 
representation can 
have useful properties: 
reduced 
dimensionality, easy to 
visualize, but there are 
other tasks as well

encoder decoder

Learned (latent) representation
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Part 4: Data Representation



Machine learning in computational biology - outline
● Introduction to machine learning:

○ What is machine learning, types of problems, assumptions, workflow, generalization

● Machine learning models and algorithms:
○ Discriminative vs generative models, supervised models (logistic and linear regression, kNN, 

neural networks), unsupervised models (dimensionality reduction, clustering)

● Data representation:
○ Considerations and examples, one-hot encoding, feature engineering, representation 

learning

● Model comparison and uncertainty:
○ Model assessment, model selection, uncertainty, cross-validation

● Transparency and reproducibility



We are given a set of sequences… but algorithms 
only understand numbers!

function f
examples 
represented 
by features:
immune 
receptor 
sequences

label: COVID-19 
specificity

positive
(antigen-specific)

negative
(not binding the 

antigen)

CASSFQNTGELFF
CASSSVNNNEQFF

CAVGEANTGELFF
CAYQEVNTGELFF

CAYQEVNTRRYF
CASSCFEVNTGEF

CAYQEVNTYF

CAYQEVNELFF



We can represent sequences by their 
physicochemical properties, for instance

function   fexamples 
represented 
by features
(data)

label

class 1
(e.g. positive class)

class 2
(e.g. negative class)

[0.2   0.4   0.3   0.12]
[0.13 0.2   0.12 0.2  ]

[0.2   0.4   0.5   0.92]
[0.33 0.23 0.2   0.21]
[0.4   0.1   0.2   0.1  ]
[0.14 0.1   0.2   0.03]
[0.11 0.02 0.6   0.05]
[0.1   0.6   0.8   0.02]

feature vector 
(one example) also called model 

and hypothesis

also called target and 
output (notation: Y)

feature, but also 
called covariate, 
input variable, 

predictor

design matrix (notation: X)



Some examples of data representation (encoding)

❏ One-hot encoding

❏ K-mer frequencies

Data representation heavily depends on data, so in different domains, there will be different 
representations:

When classifying images with classical approaches: number of edges, objects

When predicting the length of the trip: number of traffic lights, time of day

When predicting if an email is a spam or not: certain words, presence/absence of 
personal name



Some examples of data representation (encoding)

❏ One-hot encoding

❏ K-mer frequencies

Data representation heavily depends on data, so in different domains, there will be different 
representations:

When classifying images with classical approaches: number of edges, objects

When predicting the length of the trip: number of traffic lights, time of day

When predicting if an email is a spam or not: certain words, presence/absence of 
personal name

We have to be careful how we choose features - we 
must not introduce information that should not be there!



One-hot encoding

❏ A common way to represent 
categorical data where only one value 
can be chosen: rows represent the 
possible values

❏ Also called dummy variables in 
statistics

A

1
0
0
0

A

1
0
0
0

T

0
0
0
1

G

0
0
1
0

C

0
1
0
0

AATGC

is it A
is it C
is it G
is it T

nucleotide sequence:

one-hot encoding



K-mer frequency

❏ Often used for sequence 
representation

❏ k-mers are (optionally 
overlapping) subsequences 
of length k

0  0 0 0.33 0 … 0 0.33 0 … 0 0.33 0 … 0

AATGC

A A T G C
A A T
A A T G
A A T G C

nucleotide sequence:

k-mer frequency encoding (k=3)

present 3-mers: AAT, ATG, TGC

all possible 3-mers: AAA, AAC, AAG, AAT, ACA, …, TTT
(43=64 combinations)

AAT ATG TGCAAA ... … TTT... ...



ML algorithm performance heavily depends on data 
representation
❏ Data representation refers to choosing and constructing features

❏ We don’t always know it advance which features are the best for the problem: 
we have to know the domain:

 CASSFQNTGELYF
CASSSVNNNEYFF
CAVGEANTGELFF
CAYQEVNTGELFF

CAYQEVNTRRYF
CASSCFEVNTGEF
CAYQEVNTYF

CAYQEVNELFF

raw data

represent sequence as 
1 if it contains Y 
(tyrosine) and 0 if not:

[1, 1, 0, 1, 1, 0, 1, 1]T

data representation: 
option 1

represent the sequence 
by k-mer frequency:

[0, .., 0.02, 0.03, .., 0] data representation: 
option 2

Which one is better?



Feature engineering & feature selection
❏ Feature engineering: together with domain experts, ML researchers would discuss and 

derive features which they believe could be useful for the model

Example: for biological sequences, there are a few popular alternatives like k-mer 
frequencies and physicochemical properties

❏ This way a lot of features could be constructed and the best ones would be selected as 
a part of fitting the model (feature selection)



Representation learning
❏ Most often in context of neural networks: the many layers of the network learn 

a hierarchical, alternative representation of the (raw) data that was provided 
as input



Representation learning - hidden layers in neural 
networks can be seen as different representations

Deep neural network

“A good representation is the one that 
makes the learning task easier.”

Goodfellow et al. 2016



Deep neural network

Representation learning - hidden layers in neural 
networks can be seen as different representations



 4.32         1.87        -0.31         -1.7

Deep neural network

New data representation

Representation learning - hidden layers in neural 
networks can be seen as different representations



Representation learning with autoencoders

x x

Learned representation

encoder decoder

❏ Also used for 
dimensionality 
reduction and 
visualization

❏ Different types of 
autoencoders: 
denoising, sparse



Part 5: ML Model Comparison and 
Uncertainty



Machine learning in computational biology - outline
● Introduction to machine learning:

○ What is machine learning, types of problems, assumptions, workflow, generalization

● Machine learning models and algorithms:
○ Discriminative vs generative models, supervised models (logistic and linear regression, kNN, 

neural networks), unsupervised models (dimensionality reduction, clustering)

● Data representation:
○ Considerations and examples, one-hot encoding, feature engineering, representation learning

● Model comparison and uncertainty:
○ Model assessment, model selection, uncertainty, cross-validation

● Transparency and reproducibility



Model selection and model assessment
In a typical workflow, we perform two tasks:

Model selection: estimating the performance of different models in order to 
choose the best one

Model assessment: having chosen the final model, estimating its prediction 
error (generalization error) on new data

Definitions from: Hastie et al. 2009



Model selection and model assessment
In a typical workflow, we perform two tasks:

Model selection: estimating the performance of different models in order to 
choose the best one

Model assessment: having chosen the final model, estimating its prediction 
error (generalization error) on new data

Definitions from: Hastie et al. 2009

different learning algorithms or same 
learning algorithms, but different 

hyperparameters (e.g., different number of 
layers in a neural network)



Evaluation of an ML algorithm
❏ To do model selection (and model assessment) we need to know how to do model 

evaluation

❏ A suitable cost function has to be chosen



Evaluation of a ML algorithm
❏ Two ML algorithms are different if and only if their percentage of correct 

classifications would be different on average when trained on a training set of a 
given fixed size and tested on all data points in the population

Dietterich 1998

Of course we cannot test on the entire population, but we should be aware that the 
difference we see in one particular result might not be the true difference between 
algorithms



Evaluation of an ML algorithm: random holdout test 
set
❏ The simplest scenario: split the dataset to train/test dataset

❏ Estimate performance of the algorithm on the test set

original dataset

training dataset test dataset

Test dataset is typically 25-30% of the original 
dataset, but in different applications, these 
numbers vary from 10 to 50% 



Evaluation of a ML algorithm: random holdout test 
sets
❏ A bit more robust scenario: split the dataset randomly into multiple train/test 

datasets

❏ Estimate performance of the algorithm as the average of the performances on 
test sets

original dataset

training dataset test dataset
Test dataset is typically 25-30% of the original dataset.

training dataset test datasettraining dataset test datasettraining dataset test datasettraining dataset test dataset



Evaluation of a ML algorithm: random holdout test 
sets
❏ A bit more robust scenario: split the dataset randomly into multiple train/test 

datasets

❏ Estimate performance of the algorithm as the average of the performances on 
test sets

❏ The same examples could be in multiple test sets: biased estimate of the 
performance!

original dataset

training dataset test dataset
Test dataset is typically 25-30% of the original dataset.

training dataset test datasettraining dataset test datasettraining dataset test datasettraining dataset test dataset



K-fold cross validation
❏ K-fold cross validation (CV) refers to splitting the data into k training and test 

set pairs so that each example is once a part of the test set

original dataset

test

test

test

test

testsplit 1

split 2

split 3

split 4

split 5

❏ The model is trained and 
evaluated on each train/test set 
pair

❏ The estimated performance is the 
obtained as average over all test 
set performances

❏ Typical values of k: 5, 10

❏ Leave-one-out CV



How to do model selection
1. Split the original dataset 

to train/test dataset per 
one of the previous 
strategies (e.g., 5-fold 
CV)

2. For each model compute 
the performance as the 
average of performances 
on test sets (as 
described in the previous 
slide)

3. Select the model with 
best average 
performance

original dataset

test

test

test

test

testsplit 1

split 2

split 3

split 4

split 5

model 1.1

model 1.2

model 1.3

model 1.4

model 1.5

model 2.1

model 2.2

model 2.3

model 2.4

model 2.5

ML model 1 ML model 2

average 
performance 1

average 
performance 2

selected model: 
ML model 1



How to do model selection
1. Split the original dataset 

to train/test dataset per 
one of the previous 
strategies (e.g., 5-fold 
CV)

2. For each model compute 
the performance as the 
average of performances 
on test sets (as 
described in the previous 
slide)

3. Select the model with 
best average 
performance

original dataset

test

test

test

test

testsplit 1

split 2

split 3

split 4

split 5

model 1.1

model 1.2

model 1.3

model 1.4

model 1.5

model 2.1

model 2.2

model 2.3

model 2.4

model 2.5

ML model 1 ML model 2

average 
performance 1

average 
performance 2

selected model: 
ML model 1

The performance we got here is not 
the generalization performance!



Model assessment uses a separate test set not used 
during model selection

original dataset

training dataset

validation

train ML 
model 1

train ML 
model 2

performance 1 performance 2

choose the best 
model based on 

performance

best ML 
model

performance 
estimate

Data used to assess the performance cannot be used during 
training or when selecting between ML approaches

performance 2

training dataset validation test

model selection and 
training



performance 
estimate 1

performance 
estimate 1

performance 
estimate 1

performance 
estimate 1

best ML modelbest ML modelbest ML modelbest ML model

training dataset validation testtraining dataset validation testtraining dataset validation testtraining dataset validation test

Model assessment with multiple test sets: a more 
robust estimate
❏ We can employ all the same techniques (e.g., CV) to split the data, do model selection 

as described before and use separate test sets to estimate generalization performance

original dataset

model selection and 
training

training dataset validation test

best ML model 
(split 1)

performance 
estimate 1

average 
performance 

estimate



Recommendations 
for ML in biology
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Part 6: Transparency and 
Reproducibility



Machine learning in computational biology - outline
● Introduction to machine learning:

○ What is machine learning, types of problems, assumptions, workflow, generalization

● Machine learning models and algorithms:
○ Discriminative vs generative models, supervised models (logistic and linear regression, kNN, 

neural networks), unsupervised models (dimensionality reduction, clustering)

● Data representation:
○ Considerations and examples, one-hot encoding, feature engineering, representation learning

● Model comparison and uncertainty:
○ Model assessment, model selection, uncertainty, cross-validation

● Transparency and reproducibility



Transparency & interpretability are crucial for ML
❏ “Transparency refers to how easily a stakeholder can examine the model 

and understand, or explain, how the model operates when combining the 
inputs to produce output, regardless how accurate the model is”.

Wainberg et al. 2018

❏ Transparency would enable experts to check the model prediction and use it 
or check it more

❏ Interpretability: “understanding the patterns in the data may be just as 
important as fitting the data”

Ching et al. 2018



Interpretability of neural networks
❏ Some techniques: 

❏ Visualizing filters in (the first layers of) CNNs
❏ Clustering high contribution regions to derive motifs
❏ Backpropagating w.r.t. input data (saliency maps)
❏ Visualizing class activation maps

Simonyan et al. 2014 Selvaraju et al. 2017Alipanahi et al. 2015 Avsec et al. 2021



Reproducibility in ML
Reproducibility: “the provision of enough detail about 
study procedures and data so the same procedures 
could be exactly repeated”

Goodman et al. 2016
Achieving reproducibility:

❏ Keep track how each result is produced
❏ Record all intermediate results [in standardized 

formats]
❏ Store raw data behind all plots
❏ Provide public access to scripts, runs and 

results
❏ Archive the exact versions of all external 

programs used
❏ Use version control

Sandve et al. 2013



Reproducibility in ML

❏ The code and models 
should be publicly available 
(GitHub, Zenodo, or other 
services)

❏ Possible to inspect, validate, 
(re)use, and improve models
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