
Variant Calling Applications in Avdeling for medisinsk
genetikk, OUS

§ Inherited disease diagnostic: nuclear DNA, mitochondrial DNA

§ Inherited cancer diagnostic

§ Noninvasive Prenatal Testing (NIPT)

§ Preimplantacional Genetic Diagnosis (PGT)

Variant Calling - steps

Carry out sequencing
to create FASTQ files

Align the sequences to a
reference genome creating

BAM or CRAM files

Identify where the
aligned reads differ from

the reference genome
and write to a VCF file

Concepts

- Short or long read sequencing (lower yield, higher error rate, higher costs)

- Single end or paired-end sequencing

- Target (some regions), exome (all coding regions) or genome sequencing

https://gatk.broadinstitute.org/hc/en-us

Overview of variant calling

Alignment
(bwa mem)

Cleaning and
Refinement

(GATK)

Variation
calling

(GATK)

Variation
filtration &
annotation

(GATK +
annovar)

Mark
Duplicates

Base quality score
recalibration

Quality
control on

FASTQ

Quality
control on

BAM

Quality
control on

VCF

Quality control on fastq files (fastqc)

Sequence length distribution

Illumina Ion Torrent

Quality control on fastq files (fastqc)

Per Base Sequence Quality

🟢 🔴

Quality control on fastq files (fastqc) – Cont.

Per Base Sequence Content

🟢 🔴

Quality control on fastq files (fastqc) – Cont.

Sequence duplication level

🟢 🔴

Find genomic locations (genomic coordinates) of the sequences in a reference
genome, and writing into a SAM/BAM/CRAM file.

Requirements:
- Short read aligner: bwa-mem2 (mapping DNA sequences against a large
reference genome)
- Reference genome (fasta and its index file)
- Fastq file(s)

Preparation before alignment: index the reference genome by the aligner
bwa-mem2 index human.fasta

Alignment

Alignment – reference genome

What is a good reference genome:

Because the aligner tries to place the read to a location in the reference
genome:

- It contains all chromosomes: chromosomes 1–22 (chr1–chr22, 1-22), X
(chrX, X), Y (chrY, Y) and Mitochondrial (chrM, MT).

- And unlocalized sequence: on a specific chromosome but with unknown
order or orientation. Identify by _random suffix.

- And unplaced sequence: on an unknown chromosome. Identify
by chrU_ prefix.

No matter of sizes of the capture, always use the whole genome as the
reference genome!

https://gatk.broadinstitute.org/hc/en-us/articles/360035890711-GRCh37-
hg19-b37-humanG1Kv37-Human-Reference-Discrepancies#humanG1Kv37

https://gatk.broadinstitute.org/hc/en-us/articles/360035890711-GRCh37-hg19-b37-humanG1Kv37-Human-Reference-Discrepancies

Alignment – read group – marker for the reads

A read group: all the reads derived from the same:
library preparation && biological sample && lane && flow cell

Used to not only differentiate samples, but also various technical features
associated with artefacts. Can be used to correct errors in downstream analysis,
e.g. duplicate marking and base quality score recalibration.

Tags in SAM/BAM/CRAM (connected by tabs, SAM format specification):
@RG
ID : Read group identifier
LB : Library
PL : Platform/technology used to produce the reads (Valid values). E.g. ILLUMINA
CN : Name of sequencing center producing the read
PU : Platform unit (e.g. flowcell-barcode.lane)
SM : Sample
DS : Description
DT : Date the run was produced, ISO8601 date or date/time, e.g. 2022-10-24
@RG\tID:NA12878\tLB:NA12878\tPL:ILLUMINA\tPU:BH35C5DSX5.1\tSM:NA12
878

Alignment – result

Reads mapped to the unique location: mapping quality > 0

Reads not mapped: unmapped reads, non-human sequences, bad
quality bases, big insertion/deletion in the sample

Reads mapped to the multiple locations equally: mapping quality = 0,
repeats, pseudogenes

Alignment – commands

bwa-mem2 mem \ # mem is one of the functions in bwa-mem2
-R ‘Read group string’ \ # read group information
-v 2 \ # how much log informaiton print out in the screen, 2 means only
show warnings/error
-M \ # Mark shorter split hits as secondary (for Picard compatibility).
-t CPUs \ # number of CPUs want to used in the calculation
-Y indexed reference genome \ # e.g. human_g1k_v37_decoy.fasta
R1_FASTQ R2_FASTQ | \
samtools view –@ CPUs –Sb - | \ # convert SAM to BAM file
samtools sort –@ CPUs –o sorted.bam –T sorted – # sort the BAM file by
genomic coordinates

samtools index -@ CPUs sorted.bam # index the BAM file

Results will be: sorted.bam and sorted.bam.bai

Refinement of alignment – data clean up

No perfect world!

- The sample preparation is not perfect – Mark duplicates

- The sequencer is not perfect - Mark duplicates, BQSR

- The aligner is not perfect – re-assembly in variant caller

Overview of variant calling

Alignment
(bwa mem)

Cleaning and
Refinement

(GATK)

Variation
calling

(GATK)

Variation
filtration &
annotation

(GATK +
annovar)

Mark
Duplicates

Base quality score
recalibration

Quality
control on

FASTQ

Quality
control on

BAM

Quality
control on

VCF

Refinement of alignment – Duplicates

Refinement of alignment – Duplicates

Originating from a single fragment of DNA, but recognized as two reads in
the sequencing - PCR duplicates, Optical duplicates

Refinement of alignment – Duplicates - algorithm

Duplicated reads could create fake coverage, which create false variants

By comparing sequences in the 5 prime positions of both reads and read-pairs in a
SAM/BAM file.

The tool differentiates the primary and duplicate reads using an algorithm that
ranks reads by the sums of their base-quality scores.

main output is a new SAM or BAM file, Duplicates are marked with the hexadecimal
value of 0x0400, which corresponds to a decimal value of 1024.

Refinement of alignment – Duplicates - command

gatk MarkDuplicates \

-INPUT ${input_file}.bam \

-OUTPUT "${output_file}.bam" \

-METRICS_FILE "${output_file}.markduplicates.metrics" \
-CREATE_INDEX true \

-CREATE_MD5_FILE true \

-VALIDATION_STRINGENCY STRICT

Base quality score (in fastq file): tell how much we can trust the base said by
the sequencer. It is important for variant calling.

However, there is systematic (non-random) technical error from sequencer,
leading to over- or under-estimated base quality scores in the data.

Steps:

BaseRecalibrator divided bases into bins based on the following features:
• read group
• quality score from the sequencer
• machine cycle
• current base + previous base (dinucleotide)

and calculate error rate by (# mismatches + 1) / (# bases + 2) per bin. The
known variants will not be counted as mismatches.

ApplyBQSR adjust each base's score based on which bins it falls in.

Refinement of alignment – Base Quality Score Recalibration

gatk BaseRecalibrator \

-I ${input_file}.bam \

-R ${reference} \

-L calling_region.interval_list \
--known-sites ${dbsnp_data} \

--known-sites 1000G_phase1.indels.b37.vcf \

--known-sites Mills_and_1000G_gold_standard.indels.b37.vcf \

-O ${output_file}.recal_data.table

Refinement of alignment – BQSR – command 1

gatk ApplyBQSR \

-I ${input_file}.bam \

-R ${reference} \

--bqsr-recal-file ${output_file}.recal_data.table \
--create-output-bam-md5 true \

-O ${output_file}.bam

With --emit-original-quals, the original base quality score
is stored under OQ tag in the bam file.

Refinement of alignment – BQSR – command 2

What steps needed for which sequencing

Target
sequencing

Exome
sequencing

Genome
sequencing

Mark duplicates ✔ ✔ ✔

BQSR ✖ ✔ (✔)

SAM/BAM file format

FLAG (nr. 2): 4 (unmapped reads), 1024 (duplicated reads)

Exercise I

Download IGV (Integrative Genomics Viewer):
https://software.broadinstitute.org/software/igv/download

Download the BAM files to view in IGV:
https://bit.ly/3z0hIuN

- Folder structures of the exercise

- Running the first two scripts to do alignment, refinement of alignment and

quality control on the bam file

- View the bam file in IGV on duplicates, read pairs, reads mapped to

multiple locations (click the reads, base, 7:6,021,962-6,023,036, view as

pairs, variants 1:17,380,476-17,380,516 (SNP), 2:48,032,854-

48,032,893(deletion), 11:108,151,687-108,151,726(insertion))

https://bit.ly/3z0hIuN

Quality Control on the BAM file

- How many reads well mapped to the reference genome
Adaptors
Sequences not from the species you sequence

- The length of the DNA fragment in the sample preparation (insert
size)

- How many reads mapped on each genomic position (coverage)
Median coverage, percentage of 10X, percentage of 20X, coverage

uneveness

Quality Control on the BAM – Supported interval list format

.interval_list, 1-based

.list or .intervals, 1-based
<chr>:<start>-<end>

.bed, 0-based
<chr>\t<start>\t<end>

.vcf, 1-based
Together with –ip 100, regions with 100 bp on each side of the
variant

Quality Control on the BAM – CollectAlignmentSummaryMetrics

gatk CollectAlignmentSummaryMetrics \

R=${reference} \

I=${bam_file} \

O=CollectAlignmentSummaryMetrics.txt \
MAX_INSERT_SIZE=600 # used to define chimeras

Important results:
•Total number of reads (total, no exclusions)
•High quality aligned PF reads (high quality == mapping quality >= 20)
•High quality aligned PF Q20 bases (subset of above where base quality >= 20)
•Reads aligned in pairs (vs. reads aligned with mate unaligned/not present)

Metrics are written for the first read of a pair, the second read, and combined
for the pair.

Quality Control on the BAM file – CollectInsertSizeMetrics

gatk CollectInsertSizeMetrics \

R=${reference} \

I=${input_file}.bam \

O=CollectInsertSizeMetrics.txt \
HISTOGRAM_FILE=CollectInsertSizeMetrics-histogram.pdf

Important results:
- MEDIAN_INSERT_SIZE
- MEDIAN_ABSOLUTE_DEVIATION

Quality Control on the BAM file – HsMetrics

For capture sequencing samples (Find out the efficiency of the capture kit):
gatk CollectHsMetrics \

R=${reference} \

I=${input_file}.bam \

O=CollectHsMetrics.txt \
BAIT_INTERVALS=${bait_list} \

TARGET_INTERVALS=${target_list} \

PER_TARGET_COVERAGE=CollectHsMetrics-per-target-coverage.txt

For whole genome sequencing samples:
gatk CollectWgsMetrics \
R=${reference}

I=${input_file}.bam\

O=collect_wgs_metrics.txt

Quality Control on the BAM file – HsMetrics

BAIT_DESIGN_EFFICIENCY: TARGET/BAIT, 1 indicates a perfect design

OFF_BAIT_BASES: the number of PF_BASES_ALIGNED that are mapped

away from any baited region.

MEDIAN_TARGET_COVERAGE: The median coverage of a target region.

PCT_USABLE_BASES_ON_BAIT/TARGET: The number of aligned, de-

duped, on-bait/target bases out of the PF bases available.

PCT_EXC_DUPE/MAPQ/BASEQ/OVERLAP/OFF_TARGET: percentage of

reads excluded from the coverage calculation because of different reasons

PCT_TARGET_BASES_10X/20X: The fraction of all target bases achieving

10X/20x or greater coverage.

Quality Control on the BAM file – Coverage problems

- Median coverage is low, reason:
The number of reads from sequencing is low,
High duplication rate,
High level of unmapped reads

- The coverage is not even, you will see:
The number of reads from sequencing is probably OK,
the median coverage is also OK,
Percentage of positions covered by more than 10 reads: bad
Percentage of positions covered by more than 20 reads: bad

Variant calling – germline variants VS somatic variants

Variant calling is the process by which we identify variants from sequence data.

Germline variants: in all cells, for diploid, heterozygosity (Aa) allele ratio should
be 50%.

Somatic variants: only in certain cells, heterozygosity (Aa) allele ratio could be
very low depends on whether you pick up the right tissue.

Germline Variant Calling

Germline Variant Calling - command

gatk HaplotypeCaller \

-R ${reference} \
-I ${input_file}.bam \

--max-alternate-alleles 3 \ # number of alt to the
genotyper

--read-filter OverclippedReadFilter \ # too short after
soft-clipping

--dbsnp ${dbsnp} \
--emit-ref-confidence GVCF \

-L ${intervals} \
-O ${output_file}.g.vcf.gz # Genomic Variant Call Format

Germline Variant Calling - command

gatk GenotypeGVCFs \

-R ${reference} \
--variant ${output_file}.g.vcf.gz \

--dbsnp ${dbsnp} \
-O ${output_file}.raw.vcf.gz

VCF file format

GVCF - Genomic Variant Call Format

Basically, the same format with the VCF format, but with information on all sites, no
matter whether there is a variant. It is used for joint variant calling.

Quality Control on the VCF file

Whether there are too many false positive variants

- ti/tv ratio (transition/tranversion ratio): exome 3.0, genome 2.0

Transition: purine to purine or pyrimidine to pyrimidine, A<->G or C<->T

Tranversion: purine to pyrimidine or vice versa, A<->C or G<->T

- Number of variants : exome (35000 - 55000), genome (4.7 M)

- Contamination: whether there are other human sequences in the

sample (het: allele ratio < 0.25 or >0.75)

- SNP fingerprinting tests: check whether there are sample swaps

Variant Quality Filtration – hard filtering and soft filtering
Hard-filtering consists of choosing specific thresholds for one or more annotations and
throwing out any variants that have annotation values above or below the set
thresholds. Limiting but possible on small set of variants. – used for target or exome
sequencing data

Soft-filtering: uses machine-learning algorithms to learn from the data what are the
annotation profiles of good variants (true positives) and of bad variants (false positives)
in a particular dataset. - Variant quality score recalibration (VQSR) - requires a large
number of variants and well-curated known variant resources.

>= 2.0 kg PASS

Hard - filtering

< 2.0 kg FAIL

Soft - filtering

Split VCF into
SNP and indel

VCF

Soft/hard filter
respectively

Merge SNP
filtered and

Indel filtered
VCF

Variant Quality Filtration

Little different for the features and thresholds used for SNPs and Indels.

GATK: SelectVariants GATK: MergeVcfs

Variant Quality Filtration – hard filtering

One of the most helpful ways to approach hard-filtering is to visualize the distribution of
annotation values for a truth set called using a particular pipeline.

Quality, strand bias, mapping quality, base position

Several features could be consider:
QualByDepth (QD): QUAL/ the unfiltered depth of non-hom-ref samples. normalized the variant.
FisherStrand (FS): the Phred-scaled probability that there is strand bias at the site.
StrandOddsRatio (SOR): another way to estimate strand bias using a test similar to the symmetric
odds ratio test.
RMSMappingQuality (MQ): the root mean square mapping quality over all the reads at the site.
MappingQualityRankSumTest (MQRankSum): It compares the mapping qualities of the reads
supporting the reference allele and the alternate allele. A positive value means the mapping
qualities of the reads supporting the alternate allele are higher than those supporting the
reference allele; a negative value indicates the mapping qualities of the reference allele are higher
than those supporting the alternate allele.
ReadPosRankSumTest (ReadPosRankSum): It compares whether the positions of the reference
and alternate alleles are different within the reads.

Variant Quality annotation – hard filtering - command

gatk VariantFiltration \
-R ${reference} \

--variant ${output_file}.raw.snp/indel.vcf.gz \
--filter-expression "QD < 2.0" --filter-name "QD_failed” \

--filter-expression "FS > 60.0" --filter-name "FS_failed” \
......

-O "variants.${mode}.filtered.vcf"

Variant Quality annotation – soft filtering (VQSR)

Steps:

- VariantRecalibrator builds the model(s)

This model attempts to describe the relationship between variant annotations
(e.g. QD, MQ and ReadPosRankSum) and the probability that a variant is a true
genetic variant versus a sequencing or data processing artifact.

- ApplyVQSR applies a filtering threshold

This adaptive error model can then be applied to both known and novel
variation discovered in the call set of interest to evaluate the probability that
each call is real. The result is a score called the VQSLOD that gets added to the
INFO field of each variant. This score is the log odds of being a true variant
versus being false under the trained Gaussian mixture model.

Variant Quality annotation – soft filtering - command
gatk VariantRecalibrator \

-R ${reference} \

--variant ${output_file}.raw.snp/indel.vcf.gz \

--resource:hapmap,known=false,training=true,truth=true,prior=15.0
${hapmap_ressource} \

...... (other resources)

-an QD \

-an MQRankSum \
-an ReadPosRankSum \

...... (other features)

-tranche 100.0 -tranche 99.5 -tranche 99.0 -tranche 90.0 \

-O ${output_file}.vqsr.output.recal \
--tranches-file ${output_file}.vqsr.output.tranches \

--rscript-file ${output_file}.vqsr.output.plots.R \

--mode SNP/INDEL

Variant Quality annotation – soft filtering - command

gatk ApplyVQSR \

-R ${reference} \
--variant ${output_file}.raw.snp/indel.vcf.gz \

-O variants.snp/indel.filtered.vcf \
--truth-sensitivity-filter-level 99.0 \

--tranches-file ${output_file}.vqsr.output.tranches \
--recal-file ${output_file}.vqsr.output.recal \

--mode SNP/INDEL

Exercise II
- Running the 03,04,05 scripts to do bam quality control, variant calling and variant

filtration

- Find PCT_PF_READS_ALIGNED in

NA12878F.CollectAlignmentSummaryMetrics.easy.txt

- Find MEDIAN_INSERT_SIZE, MEDIAN_ABSOLUTE_DEVIATION in

NA12878F.CollectInsertSizeMetrics.easy.txt

- Find BAIT_DESIGN_EFFICIENCY, OFF_BAIT_BASES , MEDIAN_TARGET_COVERAGE,

PCT_TARGET_BASES_10X, PCT_TARGET_BASES_20X in

NA12878F.CollectHsMetrics.easy.txt

- Find how many variants in 04_variantfiltration/NA12878F.final.vcf (grep –v ‘^#’

NA12878F.final.vcf|wc -l)

- Find how many PASS variants in 04_variantfiltration/ NA12878F.final.vcf (grep ‘PASS’

NA12878F.final.vcf|wc -l)

Variant Functional annotation – Annovar - Consequence

A tool (written with perl) with providing different data source.

Gene based annotations:

Where are the variants:
exonic = splicing > ncRNA > UTR5/UTR3 > intronic > upstream/downstream
(1kb) > intergenic

What are the consequence of the variants:
frameshift insertion > frameshift deletion > frameshift block substitution >
stopgain > stoploss > nonframeshift insertion > nonframeshift deletion >
nonframeshift block substitution > nonsynonymous SNV > synonymous SNV
> unknown

Variant Functional annotation – Frameshift mutations

Variant Functional annotation – nonsynonymous mutations

Variant Functional annotation – frequencies -
gnomAD

The Genome Aggregation Database (gnomeAD):

- V2.1.1 (GRCh37/hg19) contains 125,748 healthy exome sequences and

157,078 healthy genome sequencing data

- Free to use

- Analyze all samples with the same pipeline and joint variant calling to

improve consistency across the projects

- Quality control on each variant

- It also contains structural variants, mitochondrial variants

- It contains population variant frequencies (e.g. European, East Asian etc.)

https://gnomad.broadinstitute.org/news/2018-10-gnomad-v2-1/

https://gnomad.broadinstitute.org/news/2018-10-gnomad-v2-1/

Variant Functional annotation – frequencies – in-house
database

If you have large number of samples (> 1000 individuals):

- Prepared with the same sample preparation method

- Sequenced in the same sequencer

- Analyzed with the same pipeline

Build in-house database

Advantage:

Filter out artefacts in your settings.

Variant Functional annotation – classification –
Clinvar

CLINSIG: clinical significant

Variant Functional annotation – classification –
HGMD

The Human Gene Mutation Database (HGMD) represents an attempt to collate
all known (published) gene lesions responsible for human inherited disease.

New release every quarter.

Free (3 year old data, no downloading, limited, accessible from VEP) and
licence version.

https://www.hgmd.cf.ac.uk/ac/all.php

https://www.hgmd.cf.ac.uk/ac/all.php

Variant Functional annotation – variant functional effect
predictors

SIFT (Sorting Intolerant from Tolerant) scores: SIFT uses sequence homology to
compute the likelihood that an amino acid substitution will have an adverse effect on
protein function. The underlying assumption is that evolutionarily conserved regions tend
to be less tolerant of mutations, and hence amino acid substitutions or
insertions/deletions in these regions are more likely to affect function (D: Deleterious; T:
tolerated)

PolyPhen-2 (Polymorphism Phenotyping v2) scores: predicts the possible impact of
amino acid substitutions on the stability and function of human proteins using structural
and comparative evolutionary considerations. (D: Probably damaging, P: possibly
damaging; B: benign)
……

CADD (Combined Annotation Dependent Depletion) scores: a method for objectively
integrating many diverse annotations into a single measure (C score) for each variant. C
scores correlate with allelic diversity, annotations of functionality, pathogenicity, disease
severity, experimentally measured regulatory effects and complex trait associations,
precompute C scores for all 8.6 billion possible human single-nucleotide variants and
enable scoring of short insertions-deletions. (The higher the worst consequence)

Variant Functional annotation – annovar command

perl annovar_2020June07/table_annovar.pl \
${input_vcf} \
annovar_2017Jul16/humandb/ \
--vcfinput \
--remove \ # remove all temporary files
--buildver hg19 \
--outfile ${output_marker} \
--otherinfo \ # print out columns after QUAL
--gff3dbfile repeatMasker_hg19_all.gff3 \
-protocol

"gff3,refGene,avsnp150,dbnsfp33aReduced,clinvar_20210123,c
add13gt10,gnomad_exomePOPMAX,gnomad_genomePOPMAX" \

--operation 'r,g,f,f,f,f,f,f’ \

View the annotated vcf file under 05_variantannotation (41203088):

Joint Variant Calling

Variant Calling on multiple samples – higher sensitivity and better genotype

1. Clearer distinction between homozygous reference sites and sites with missing
data
Batch-calling does not output a genotype call at sites where no member in the batch
has evidence for a variant; it is thus impossible to distinguish such sites from
locations missing data. In contrast, joint calling emits genotype calls at every site
where any individual in the call set has evidence for variation.

2. Greater sensitivity for low-frequency variants
By sharing information across all samples, joint calling makes it possible to “rescue”
genotype calls at sites where a carrier has low coverage but other samples within the
call set have a confident variant at that location. However this does not apply to
singletons, which are unique to a single sample. To minimize the chance of missing
singletons, we increase the cohort size -- so that singletons themselves have less
chance of happening in the first place.

3. Greater ability to filter out false positives (VQSR works better with bigger data)

Joint Variant Calling – trio pedigree file

A pedigree is a structured description of the familial relationships between
samples. One row = one person

Family ID Individual ID Paternal ID Maternal ID Sex Phenotype

Family_1 II.1 I.1 I.2 2 2
Family_1 I.1 0 0 1 1
Family_1 I.2 0 0 2 1

Sex: 1=male; 2=female; other=unknown
Phenotype: 1=unaffected, 2=affected, 0,-9=missing

Family
ID

Individu
al ID

Paternal
ID

Maternal
ID

Sex Phenotyp
e

Family_1 II.1 I.1 I.2 2 2

Family_1 I.1 0 0 1 1

Family_1 I.2 0 0 2 1

Joint Variant Calling - workflow

Joint Variant Calling - command

gatk CombineGVCFs \
-R ${reference} \
--variant proband.g.vcf.gz \
--variant father.g.vcf.gz \
--variant mother.g.vcf.gz \
-ped family_1.ped \
-O family_1.combined.g.vcf.gz

g.vcf.gz per individual

GenotypeGVCFs on the
combined.g.vcf.gz with
–ped

Trio analysis - De novo variants and Recessive variants

Suppose both parents are healthy, the child has the disease. Try to find
differences between the child and the parents.

Parents don’t have: De novo
Parents just have one while the child have two: recessive variants, compound
heterzygosity

Recessive
variants

De novo
variants

Pedigree check and gender detection – Quality Control

Pedigree check: whether the three individuals coming from the same family, by
comparing with genotypes, e.g. AA+BB=AB

Gender detection: Coverage on chrX,Y compared those to autosomes

View the joint variant calling vcf file under: 06_jointvc/HG002.filter.vcf

Genome in a bottle (GIAB) – control samples and validation

https://www.nist.gov/programs-projects/genome-bottle

Benchmark (or "High-confidence") variant calls and regions.

For the same control samples, collect variant calls from different
sequencing platform and different analysis pipelines. Find consensus calls
and confident regions to create a ‘true’ set.

Free for downloading.

Have both single samples and trio samples.

https://www.nist.gov/programs-projects/genome-bottle

Storage, Pipeline, etc.

exome genome

Fastq files 15 G 80 G

BAM files 10 G 80 G

Pipelines: instead of running commands step by step, it runs the whole
workflow without interaction, also consider paralization and catching
errors.

Pipeline language: nextflow (nf-core) and WDL (GATK)

Storage

